Our stormy Sun

Astronomers have announced that they can now track sunspots forming before the tell-tale dark spots reach the Sun’s surface.

The spots are caused by magnetic activity inside the Sun, and are associated with solar storms, massive bursts of material coming from our star. NASA recently released these staggering observations of our little blue planet being swamped by a sunstorm.

Better prediction of solar storms is vital to protect our communication, navigation and power systems. In 1859 the biggest solar storm on record zapped telegraph systems around the world, with some equipment even bursting into flames. Magnetic compasses went haywire. Aurorae lit up the sky. In today’s wired world, a big storm could be catastrophic.

In 1859, Richard Carrington observed a large group of sunspots, and two solar flares. The flares' path is marked A-C and B-D. This was one of the first observations of solar flares, which Carrington suspected were the cause of the disruption on Earth. (Science Museum)

Accurate space weather predictions would allow authorities to prevent the worst effects of a solar storm by taking satellites offline and shielding power grids. With changes in the Sun’s cycles of sunspot activity, this could become increasingly important over the next few decades.

Today’s solar weather forecasters are the latest in a long tradition of sunspot-spotters. Here are a few illustrations from our collections.

A 1612 illustration of Galileo's observations of sunspots. Galileo was one of several astronomers who independently observed sunspots with a telescope in 1610 (Science Museum).

James Nasmyth's painting of a sunspot, 1860, reveals the extraordinary detail visible through his 20-inch reflecting telescope (Science Museum).

This X-ray map of the Sun's active regions was based on photographs taken from the Skylab space station in 1975 (NASA / Science & Society).

While solar weather can be troublesome, here’s hoping for sunny weather of a different sort for the last few weeks of school holidays. Once again, the Great British Summer has been a bit of a damp squib. Some things never change…

Braving the chill on Brighton Beach in 1966 (NMeM / Tony Ray-Jones).

2 thoughts on “Our stormy Sun

  1. Paul

    Assuming that N and S in Carrington’s illustration stand for north and south respectively, what does the P and F axis represent?

    Reply
  2. Alison Boyle, Curator of Astronomy and Modern Physics Post author

    Hi Paul,

    P and F denote the preceding and following limbs of the rotating Sun.

    Regards
    Alison

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *


6 + seven =

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>