Category Archives: Chemistry

The man who named the clouds

Assistant Curator Rachel Boon looks at the pioneering work of Luke Howard, who died 150 years ago today.

Stare up the sky and what can you see hiding amongst the clouds?  Mythical creatures perhaps or maybe you neighbour’s dog chasing a ball. Spotting shapes in the sky is fun, especially on a sunny day. The amateur meteorologist Luke Howard looked up and classified these wisps of white, changing the course of meteorology forever. 

Luke Howard had been inspired by nature from a young age. Born in London in 1772 Howard developed his childhood passion and became an amateur meteorologist. He even built a laboratory at his home filled with instruments to analyse the weather. Even though his day job was manufacturing chemicals for the pharmaceutical industry, Howard’s scientific work changed the way we understand the climate around us.

Luke Howard blue plaque. Credit: Wikipedia/Acabashi

Luke Howard blue plaque. Credit: Wikipedia/Acabashi

Before the 19th century, many meteorologists thought of each cloud as unique, unclassifiable and in a state of temporary existence. Instead of strict descriptions clouds were recorded by colour or individual interpretation. This all changed when Howard presented his Essay on the Modification of Clouds to the Askesian Society in 1802. The impact of this work was immense, elevating the natural phenomenon to the realms of worthy scientific investigation. Founded in detailed observations, with a pinch of imagination, these cloud types were; cumulus, Latin for ‘heap’; stratus, Latin for ‘layer’, and cirrus, Latin for ‘curl of hair’. Words we still use today.

Luke Howard captured these transient phenomena in delicate, though scientifically scrutinised sketches. The Science Museum has a rich collection of these images in a range of medium from pencil to watercolours, with some on display in our Making the Modern World gallery. It has been argued by historians of art and science that Howard’s contemporary John Constable was influenced by this new meteorological theory and visible in his powerful landscapes. Not only did Howard’s images inspire great art but so did his published essays which stimulated the imaginations of the poets Johann Wolfgang von Goethe and Percy Shelly.

Watercolour sketch by Edward Kennion with cloud studies by Luke Howard c 1808-1811

Watercolour sketch by Edward Kennion with cloud studies by Luke Howard, c 1808-1811. Image credit: Science Museum / SSPL

Even though Luke Howard was only an amateur meteorologist he believed strongly that developments in science depended on accurate data gathering. By taking daily observations of temperature, rainfall, atmospheric pressure and wind direction from his home in Tottenham, Howard became one of the first pioneers of urban climate studies. He published the first two volumes of The Climate of London deduced from Meteorological Observations at different places in the Neighbourhood of the Metropolis in 1818 and 1820, followed by an extensive second edition in 1833. Howard noted the changes in weather religiously for over 30 years recording his results in tables and innovative graphics.

You can learn more about Luke Howard’s instruments in the Science in the 18th Century gallery as part of the Climate Changing Stories display.

Alexander Parkes: Living in a material world

Rachel Boon, Assistant Curator of Technology and Engineering, blogs on creating a new display to explore the life and legacy of Alexander Parkes.

As an Assistant Curator, I get the opportunity to work with thousands of objects – from early supercomputers to model steam engines – to bring their stories to life. About eight months ago I started working on a small display celebrating an anniversary in science, technology, engineering or medicine.

Representing the scale of discovery, invention or the life of an important figure in science in a 2 x 3 meter showcase was going to be a challenge. Not deterred I thought this case was the perfect size to celebrate the life and work of the often forgotten 19th century inventor Alexander Parkes.

Alexander Parkes, inventor of the first synthetic plastic, 1848.

Alexander Parkes, inventor of the first synthetic plastic, 1848. Credit: SSPL

Parkes was born 200 years ago last month (read more about him here) and contributed to a vast range of metallurgical and material developments. Awarded a whopping 80 patents, Parkes’ work ranged from electroplating works of art to developing the first semi-synthetic plastic, Parkesine.

Two gilt vases by Alexander Parkes, 19th century.

Gilt vases by Alexander Parkes. Made by Elkington & Co. Credit: SSPL

We wanted to show both sides of Parkes, one as Parkes experimenting in his laboratory, and the other as Parkes the talented craftsman. All the objects in the display show the interplay between these skills. The most eye catching and shiny object on display is an electroplated vase that Parkes made early in his career while working at Elkington and Co. in Birmingham. Next to that are bars of copper produced during the Parkes’ process, a method of extracting valuable metal from lead.

While working on the project I found Parkes’ legacy hiding around every corner, or at least painted on the walls.

Overexcited Assistant Curator. Image: Rachel Boon

Overexcited Assistant Curator. Image: Rachel Boon

Bread Collective and the community of Hackney Wick worked together on The Walls Have Ears project to paint a mural celebrating the industrial history of the area. Why, you may ask is Parkesine, a Birmingham inventor’s miracle material, immortalised on a wall between wasteland and an Overground station? The answer is the Parkesine Company Ltd, opened in Hackney Wick in 1866 to commercialise Parkesine.

During the 19th century, desirable materials such as ivory, ebony and tortoiseshell became increasingly rare and expensive. A sustainable replica was required to meet the demand. Not only could Parkesine imitate expensive materials it also changed the face of consumerism and mass-produced goods.

Cheap to produce but moulded into the finery of the day – imitation ivory mirrors or tortoiseshell jewellery – Parkesine opened the door to people from all walks of life to be the proud owners of fancy-looking goods.  Analogous to today’s high street stores imitating designer clothes and accessories. We may proudly walk around in Pri-marni now, but Parkes was changing social aspirations over 150 years ago.

Despite Parkes’ enthusiasm and his ability to raise £100,000 (worth £10 million today) from the great industrialists of the time, the factory filed for bankruptcy after two years. Parkes’ desire to compete against natural rubbers and keep his investors happy affected the quality of the goods produced. There are records of combs deforming after a few weeks and other items exploding!

Objects made from Parkesine 1855-1891. Image: SSPL

Objects made from Parkesine 1855-1891. Image: SSPL

The final group of 14 objects on display reflect the range of objects Parkes made, from jewellery to cutlery, along with the enchanting variety of coloured pigments used.

One of my favourite objects is a toothed wheel made out of black Parkesine. If used, this small item was more likely to set your factory alight than run machinery! Parkesine is a combination of organic matter – cotton fibre – mixed with chemical nitrates, vegetable oils, camphor and alcohol.  When nitrates get hot they have a tendency to explode, so using Parkesine for anything that creates friction is asking for trouble.

Toothed gear wheel of black Parkesine, made by Alexander Parkes, c. 1860.

Toothed gear wheel of black Parkesine, made by Alexander Parkes, c. 1860. Credit: SSPL

Lucky, the Science Museum also looks after the notebooks of Alexander Parkes in our Archives at Wroughton. Parkes’ scribbles in these notebooks shows more than just his dedication to rigorous experimentation. Imbedded between the pages listing chemical combinations are delicate sketches of British landscapes. This material, along with the objects in store was integral for the 3D and 2D designers without whom this case would not look so captivating.

Notebooks of Alexander Parkes, c 1860s-1870s. Image: SSPL

Notebooks of Alexander Parkes, c 1860s-1870s. Credit: SSPL

Producing a display like this is a team effort, with many departments helping to turn hours spent researching and rummaging through stores into a display for visitors. The workshops team were up at the crack of dawn to build and install the display and the conservation team were involved from the start to ensure the objects would be safely displayed. Finally, after months of writing and rewriting text, the ribbon was cut and my first showcase was opened.

Alexander Parkes – Materials Man showcase. Source: Rachel Boon

Alexander Parkes – Materials Man showcase. Source: Rachel Boon

Alexander Parkes – Materials Man and Polymath

Sue Mossman explores the life of Alexander Parks, inventor of early plastics, on his 200th birthday.

Alexander Parkes was born in Birmingham on 29th December 1813. In his early career he described himself as an artist, and only later a chemist. He might also have described himself as a metallurgist.

A decorative metalworker by training, Parkes was to turn his sharp intelligence towards a variety of old and new materials in the burgeoning industrial world of mid-19th-century Britain. His life was an active one – he was granted over 66 patents. He also found time to father 17 children with two wives, his second wife being the friend of his eldest daughter.

Alexander Parkes, inventor of the first synthetic plastic, 1848.

Alexander Parkes, inventor of the first synthetic plastic, 1848.

Parkes had a varied and successful career in metallurgy, working on a number of processes, including the desilverising of lead – known as the Parkes process. While employed at Elkington, Mason and Company in Birmingham, he developed a process for electroplating works of art and later fragile natural objects. The epitome of this technique was a silver-plated spider’s web presented to Prince Albert.

Parkes is perhaps best known for the eponymous Parkesine – the first form of celluloid – an early semi-synthetic plastic based on gun cotton. He took out his first related patent in 1855. Parkes later won a bronze medal for excellence of product in the International Exhibition of 1862 and later a silver medal at the Paris Universal Exhibition in 1867.

Objects made from Parkesine, c 1860.

Objects made from Parkesine, c 1860.

Henry Bessemer, of steel production fame, was a colleague of Parkes. Indeed Bessemer topped the list of the investors in the Parkesine Company set up in 1866, although the company failed in 1868 – probably because of issues associated with quality and flammability. Parkes, though a prolific inventor, was no businessman. We might see him as a victim of an agile but perhaps too busy mind, and of a strong moral conscience. When he developed a potentially lucrative explosive powder, he refused to sell it to the British, French or Russian governments.

In a letter written on 7 March 1881, Parkes rather plaintively remarked that: ‘In answer to the American Inquiry “Who Invented Celluloid” … I do wish the World to know who the inventor really was, for it is a poor reward after all I have done to be denied the merit of the invention.’

Celluloid, the direct descendant of Parkesine, became a great commercial success, used to make a range of decorative goods, often imitating the more expensive ivory, tortoiseshell and mother-of-pearl. Perhaps its most enduring legacy was its application in cinematic film. Parkes had foreseen the use of Parkesine film as a replacement for glass photographic negatives as early as 1856. Even he would have been amazed by the development of celluloid film and the birth of the Hollywood film industry.

Parkesine is a fragile material, subject to degradation by light, so is seldom put on display. But from December 2013 to mid 2014 a selection of objects made from this beautiful and rare semi-synthetic plastic can be seen at the Science Museum, together with other items associated with the life and works of Alexander Parkes.

A glimpse of Dalton’s life and work

To celebrate John Dalton’s birthday, Archivist Cecilia Cassingham delves into the Science Museum Library and Archives for a glimpse of Dalton’s life and work.  

Thermometers, barometers and atoms. The daily weather, and how his body worked. Our archives provide fascinating glimpses and insights into John Dalton and his work, which was based on careful and rigorous observation.

John Dalton, English chemist, 1814.

John Dalton, English chemist, 1814. Credit © Science Museum / Science & Society Picture Library

We see this in Dalton’s daily habit of recording meteorological data – for which he was also well known – and we have two of his journals, dating between 1803 and 1827. Dalton records daily weather data, including barometric pressure and general remarks such as “raining most of the day”. On his birthday, 6 September 1803, the weather was “fine and sunny”. Should you want to know more about rain in Manchester in the 1800s, the Meteorological Register is the thing to read!

Dalton's Meteorological Register, Manchester, 1816 – 1827

Dalton’s Meteorological Register, Manchester, 1816 – 1827

Of particular fascination is Dalton’s colour blindness and life as such a diligent observer. This booklet of coloured silk threads, was used by John Dalton to test his own colour blindness, includes columns for recording impressions of vision in daylight and by candle light.

Booklet of coloured silk threads, c 1825-1844. Credit © Science Museum / Science & Society Picture Library

Booklet of coloured silk threads, c 1825-1844. Credit © Science Museum / Science & Society Picture Library

Finally, in a fascinating letter in the collection, from Dalton to his cousin George Bewley of Whitehaven, on the 9 th of 4 mo 1790, that is, the 9th April 1790, Dalton expresses his desire to “quit his present profession as teacher and enter upon some other…”. He asks his cousin’s advice about his plans: “I wish to enter upon the study of physics and science”. In the same letter, he describes his experiment on himself “to determine a near as might be the quantity of matter discharged from the body by insensible perspiration …evacuations solid, liquid, perspiration…” – so that from this we are even given an idea about what he ate and drank : loaf bread, cheese, oat bread, meal, meat, potatoes; beer, boiled milk and tea.

100 years of stainless steel

Steph Millard in the exhibitions team looks back over 100 years of stainless steel, first cast in August 1913 by Harry Brearley. 

Today’s journey into work sets me thinking. Looking at the queue of cars ahead with their stainless steel exhaust systems I repeatedly glance at my wristwatch – with its stainless steel back – to check I won’t be late. To my right, the Canary Wharf tower – with its 370,000 square feet of stainless steel cladding – glints majestically in the early morning sunshine.

Canary Wharf in London’s Docklands, 2007.  © Science Museum/SSPL

Canary Wharf in London’s Docklands, 2007

Stainless steel impacts on our lives in so many different ways. But what exactly is it and who invented it? Well, as luck would have it, an important milestone is about to be celebrated. One hundred years ago, in August 1913, an Englishman named Harry Brearley reported that he had cast an ingot of low-carbon steel that could resist attack from a variety of acids including lemon juice and vinegar. He called it ‘rustless steel’.

Harry Brearley, 1871–1948.  © Science Museum/SSPL

Harry Brearley, 1871–1948. Image © Science Museum/SSPL

At the time, Brearley had been helping an arms manufacturer overcome the problem of gun barrel erosion caused by the release of gases when the weapon is fired. His genius lay in the fact that he could foresee the commercial application of his new material within the cutlery industry. After initial scepticism, manufacturers in his home town of Sheffield were also able to recognise the potential.

An early stainless steel knife made by Butler of Sheffield, c. 1915.

An early stainless steel knife made by Butler of Sheffield, c. 1915. © Science Museum/SSPL

The essential ingredient of any stainless steel is chromium, which combines with oxygen in the air to form a strong, invisible film – a protective coating on the surface of the metal that continually self-repairs whenever scratched or grazed. But Brearley was by no means the first person to investigate the addition of chromium to steel. In the century before his discovery metallurgists from across Europe and North America were also experimenting with iron-chromium alloys.

Since then stainless steel – in all its various forms – has gone on to find a home in the widest range of applications, as a walk around the Science Museum’s galleries will testify. Within our Challenge of Materials gallery visitors can admire a wedding dress made of stainless steel wire – the brainchild of British designer Jeff Banks – whilst in the Exploring Space gallery our J2 rocket engine can remind us that between 1967 and 1973 NASA used stainless steel in all 13 of its Saturn V rockets.

Stainless steel wedding dress, 1995. Credit: Science Museum/SSPL

Stainless steel wedding dress, 1995. Credit: Science Museum/SSPL

Smaller, but equally intriguing, is the stainless steel dropper on display in The Science and Art of Medicine gallery, which instils oils through the nose as part of an Ayurvedic detox therapy to cure head ailments such as migraine and sinusitis.

Stainless steel nasal dropper on display in our medical galleries, USA, 2004–05. © Science Museum/SSPL

Stainless steel nasal dropper on display in our medical galleries, USA, 2004–05. © Science Museum/SSPL

As we celebrate Brearley’s role in the history of metallurgy why not come along to the Science Museum and see how many different examples of stainless steel you can discover?

Magnesium ammonium phosphate model by Kathleen Lonsdale, c. 1966. Image credit: Science Museum / SSPL

X-ray crystallography at 100

In 1913, following the discovery that crystals produce patterns when subjected to X-ray bombardment, father-and-son team William and Lawrence Bragg formalised the laws of X-ray crystallography. In 1915 they won a Nobel Prize for their work – Lawrence, at 25, remaining to this day the youngest winner. To celebrate the centenary of X-ray crystallography, the Science Museum has just opened Hidden Structures, a new display of molecular models made using the technique.

Why water boils at a 100°C and methane at -161°C; why blood is red and grass is green; how sunlight makes plants grow and how living organisms have been able to evolve into ever complex forms – the answers to all these problems have come from structural analysis. - Max Perutz

Since it was first developed, X-ray crystallography has been the preeminent method of analysis of molecular structure, leading to a profound understanding of the way various substances are built. The spectacular patterns revealed by the technique and the necessity of constructing large-scale molecular models has resulted in some of the Science Museum’s most striking objects.

By far the most famous result of X-ray crystallography is the structure of DNA, discovered by Maurice Wilkins, Rosalind Franklin, James D. Watson and Francis Crick in 1953. The context of this vital work is not usually talked about – the Science Museum’s display shows that proteins, viruses and other molecules were being intensively studied in the years after World War II. And the timing isn’t a coincidence: some scientists who considered the atomic bomb to be an abuse of physics turned to molecular biology, as a way of working with the fundamental physical structure but for a benign purpose.

But perhaps the most surprising thing about X-ray crystallography is that it has played an important part in the story of modern design. At the 1951 Festival of Britain – an even famed for its colourful and innovative look – one of the main visual motifs was atomic structure. We hope we’ve captured something of the spirit of 1951 in this display of important and intriguing models.

Brois Jardine is Curator of History of Science at the Science Museum. Hidden Structures, a new display case celebrating the centenary of X-ray crystallography, opens today until the end of 2013.

Collecting synthetic biology – an iGEM of an idea

Collecting stuff is generally the bit I like most about my job. That’s probably why I’ve got a bit over excited about the new acquisitions we’ve made related to synthetic biology – from no other than Tom Knight widely described as the “father” of the discipline.

Synthetic biology is research that combines biology and engineering. Sounds like genetic engineering by another name? Well yes, but it goes much further. It looks to create new biological functions not found in nature, designing them according to engineering principles.  Some see the field as the ultimate achievement of knowledge, citing the engineer-mantra of American physicist Richard Feynman, “What I cannot create, I do not understand”.

Biofilm made by the UT Austin / UCSF team for the 2004 Synthetic Biology competition. From drugs to biofuels the potential applications are huge. (Image: WikiCommons)

Now like a lot of biotech, synthetic biology isn’t particularly easy to collect or represent through objects – as it’s the biology that’s interesting and most of the ‘stuff’ used in research is entirely indistinguishable from other biological equipment e.g. micropipettes and microwells.  

What we’ve acquired are a number of iGEM kits – hardware consisting of standardised biological components known as BioBricks™ . Students competing in iGEM are sent these kits to engineer new applications. Check out some of the former winner’s projects: Arsenic Biodetector, Bactoblood, E. Chromi.

Biological lego – parts that have particular functions and can be readily assembled. The kits document a fascinating ten year period in the discipline of synthetic biology – starting from this basic aliquot kit sent out when iGEM first launched c.2002. (Image: Science Museum)

The origin of these objects and the idea for BioBricks™ is rather curious. They didn’t emerge from biology – but from computer science. Tom Knight was a senior researcher at MIT’s Computer Science and Artificial Intelligence Laboratory. Tom became interested in the potential for using biochemistry to overcome the impending limitations of computer transistors.

Knight Lab: Tom set up a biology lab in his computer science department and began to explore whether simple biological systems could be built from standard, interchangeable parts and operated in living cells. That led to setting up iGEM.

From aliquots to paper based DNA to microwells – the kits show the technological change and sheer complexity of distributing biological components to teams competing around the globe.

In 2008 - the kits trialled paper embedded DNA via these folders - but it didn't quite work out. The kits do, however, represent an important ethic - that of open-sourcing in science. Students collaborate and contribute to adding new biological parts. (Image: Science Museum)

Suggestions for other synthetic biology stuff we could collect gratefully received!

The Secret of Life

The third and final installment of Miranda Bud’s blogs… 

The Watson and Crick discovery of the DNA double helix is an iconic image of our scientific age. It is considered the milestone of contemporary genetics and is such an integrated part of our society that saying “it’s in my DNA” is a commonly used phrase by many people.

Working with Maurice Wilkins and Rosalind Franklin they unlocked the most important scientific discoveries of the 20th century. It led to countless advances, solved a mystery which had troubled scientists for decades and it was what produced Francis Crick’s famous statement in the Eagle pub on the 28th February 1953 that he and Watson had “found the secret of life”.

(The four Collaborators on the DNA model. Credit: ba-education.com)

Since then a lot more research has been done to unravel the secrets of DNA and to decode the human genome. What surprised me though was that DNA structure is not something merely left to the scientific world…

In 1993 Bijan, an American fashion designer, brought out ‘DNA’ perfume, with the caption “DNA…it’s the reason you have your father’s eyes, your mother’s smile”. This highlights the link between art and science that exists and which is becoming more visible, as more and more artists and designers take their inspiration from molecular biology.

(Bottle of 'DNA' eau de parfum, United States, 1993. Credit: Science Museum)

From my time at the Science Museum I have seen more than anything how science can be related to all aspects of life. From fashion to fission, science helps build a picture of the world around us and tries to give us reasons for why we live the way we do.

I loved seeing a different side to the museum, one most members of the public don’t get to experience. Blythe and Wroughton with their huge stores allow you to see not just science, but history as well. There are so many objects each with a unique story, and I only regret that I have only managed to discover but a few of those stories in my short time here.

New Year Honours List

Happy 2012 to everyone! The New Year Honours List has been announced and some will be starting off 2012 with new titles or new letters after their names. A number of scientists and medical researchers were honoured this year. Unsurprisingly the Science Museum’s medical collection has its fair share of sirs and dames as well as OBEs and Orders of Merit.

Artificial leg, Poland, 1940 ( Science Museum, London )

Arthur Weston made a number of artificial prostheses while imprisoned in Stalag VIIIB/344 (Lamsdorf) during the Second World War. This is just one example made from salvaged materials. Weston later became an OBE (Officer of the British Empire).

Sir James Reid's medicine chest ( Science Museum, London )

Sir James Reid (1849-1923) was personal physician to Queen Victoria. For his services he was knighted in 1895 and would also attend to the health of King Edward VII and King George V. He was also a trusted confidant and recommended that Joseph Lister become a peer.

Dr Mary Scharlieb's gown, hood, mortar board, 1888 ( Science Museum, London )

Dr Mary Scharlieb (1845-1930) was a pioneering female physician and awarded a knighthood in 1926 for her work in medicine and services to public causes. She served on the royal commission on venereal diseases from 1913 to 1916 and was one of the first female magistrates.

Dorothy Hodgkin (1910-94) was awarded the prestigious and exclusive Order of Merit in 1965 to add to her 1964 Nobel Prize for ”her determinations by X-ray techniques of the structures of important biochemical substances”. The Order of Merit is a group of 24 individuals of great achievement in the fields of the arts, learning, literature and science. Hodgkin was only the second woman to be part of the exclusive group - the first was Florence Nightingale.

Molecular model of penicillin by Dorothy M Crowfoot Hodgkin, England, 1945 ( Science Museum, London )

I wonder what 2012 holds for science and medicine and just who will be honoured in 12 months time…

Remarkable radium

100 years ago today, Marie Curie was awarded the Nobel Prize in Chemistry, becoming the first person to win two Nobel Prizes. The citation recognised ‘the discovery of the elements radium and polonium … the isolation of radium and the study of the nature and compounds of this remarkable element’.

Marie and Pierre Curie as portrayed by Imp in Vanity Fair magazine, 1904. Pierre was killed in a road accident two years later. (Science Museum)

Isolating radium from pitchblende was a laborious process, with a ton of ore yielding only a tenth of a gram of the new substance. In the early 20th century radium was a hot commodity, with the world’s small supply in demand for scientific, medical and industrial research. Curie established a Radium Institute in Paris to carry out research into radioactivity and continue production of radium and other substances.

Certificate specifying radium content, signed by Curie in 1926 (Science Museum).

Radium’s reputation as a wonder-substance led to a public craze for radium therapies. The vast array of quack cures for sale included filters to make water radioactive, radium buttons, soap, and even toothpaste.

Advert for a compress made by Radium Vita Limited which operated 1933-54 (Alison Boyle).

The dangers of radioactive substances only became widely understood later. Curie herself died in 1934 from illness related to years of exposure. You can find out more about Marie Curie in the Science Museum’s online exhibit. And if you want to know what William Crookes did with radium, come along to this talk by my colleague Jane on 15 December…