The Clock of the Long Now

The Science Museum’s curator of time, David Rooney, reflects on the ‘Clock of the Long Now’, a prototype of which is on show in the museum’s Making the Modern World gallery. David will be talking about clocks, speed and slowness at this month’s Science Museum Lates.

‘Civilization is revving itself into a pathologically short attention span. The trend might be coming from the acceleration of technology, the short-horizon perspective of market-driven economics, the next-election perspective of democracies, or the distractions of personal multitasking. All are on the increase’. This analysis of society at the end of the twentieth century was written in 1998 by Stewart Brand (born 1938), writer, inventor and founder of the Whole Earth Catalog.

Brand, together with computer designer Danny Hillis (born 1956) and other prominent fin de siècle thinkers, had become increasingly concerned that the year 2000 had come to be seen as a temporal mental barrier to the future. Brand explained: ‘Some sort of balancing corrective to the short-sightedness is needed—some mechanism or myth that encourages the long view and the taking of long-term responsibility, where “the long term” is measured at least in centuries’.

Hillis’s proposal was to build ‘both a mechanism and a myth’, a monumental-scale mechanical clock capable of telling time for 10,000 years—if it was maintained properly. Such a clock would prompt conversations about ‘deep time’, perhaps becoming a public icon for time in the same way that photographs of earth from space taken by the Apollo 8 crew in December 1968 have become icons for a fragile planet in boundless space (It was partly due to Brand’s agitation that NASA released earlier satellite-based photographs of earth to the public in 1966).

Earthrise, a photograph of the Earth taken by astronaut William Anders during the 1968 Apollo 8 mission.

Earthrise, a photograph of the Earth taken by astronaut William Anders during the 1968 Apollo 8 mission. Credit: NASA / SSPL

In 1996, Brand and Hillis formed a board of like-minded friends. Calling themselves ‘The Long Now Foundation’, the organization’s title sprang from a suggestion by musician and composer Brian Eno that ‘The Long Now’ could be seen as an important extension of human temporal horizons.

In this scheme, ‘now’ was seen as the present moment plus or minus a day, and ‘nowadays’ extended the time horizon to a decade or so forward and backward. However, the ‘long now’ would dramatically extend this ‘time envelope’. Since settled farming began in about 8000 BCE, the futurist Peter Schwartz proposed that the ‘long now’ should mean the present day plus or minus 10,000 years—‘about as long as the history of human technology’, explained Hillis.

The design principles established for the clock laid down strict parameters for its construction. With occasional maintenance, it was thought that the clock should reasonably be expected to display the correct time for 10,000 years. It was designed to be maintainable with Bronze Age technology. The plan was also that it should be possible to determine the operational principles of the clock by close inspection, to improve the clock over time and to build working models of the clock from table-top to monumental size using the same design.

Clock of the Long Now. Credit: Rolfe Horn, courtesy of the Long Now Foundation

Clock of the Long Now. Credit: Rolfe Horn, courtesy of the Long Now Foundation

In 1997, a small team of expert engineers, mechanics and designers based in San Francisco, led by Alexander Rose, set about constructing a prototype of the Clock of the Long Now, as the project became known. Driven by the power of two falling weights, which are wound every few days, the torsional (twisting) pendulum beats twice per minute, transmitting its time through an oversized watch-escapement mechanism to the heart of the clock, a mechanical computer.

This computer, conceptually linked to the machines of nineteenth-century polymath Charles Babbage, operates once every hour, updating timekeeping elements within the dial display, including the position of the sun, the lunar phase and the locally-visible star field. The slowest-moving part of this display indicates the precession of the equinoxes.

Clock face of the Clock of the Long Now. Credit: Rolfe Horn, courtesy of the Long Now Foundation

Clock face of the Clock of the Long Now. Credit: Rolfe Horn, courtesy of the Long Now Foundation

As the designer of some of the world’s fastest supercomputers in the 1980s, Danny Hillis said in the 1990s that he wished to ‘atone for his sins’ of speeding up the world by designing the world’s slowest computer for the Clock of the Long Now.

This range of tempos reflects the Foundation’s idea of ‘layers of time’ in human existence. The fastest-changing layer is fashion and art; a little slower is commerce. Infrastructure and governance take still longer to change. Cultures change very slowly, with nature reflecting the slowest tempo of all. ‘The fast layers innovate; the slow layers stabilize’, explained Brand. The Foundation believes that an understanding of the opportunities and threats embodied in these layers of temporal change is crucial in correcting humankind’s apparent short-sightedness.

These ambitions and ideals were expressed eloquently in the finished prototype clock, which first ticked in San Francisco moments before the end of New Year’s Eve 1999. It was then moved to London, where the Clock of the Long Now had been selected as the final exhibit in the Science Museum’s Making the Modern World gallery, opened by Her Majesty The Queen in 2000.

A prototype of the Clock of the Long Now, on display at the Science Museum

A prototype of the Clock of the Long Now, on display at the Science Museum

Meanwhile, the Foundation continued to build further prototypes, refining the design of the clock’s several constituent subassemblies in preparation for the construction (now underway) of a 10,000-year clock inside a mountain in western Texas, near the town of Van Horn. The Foundation hopes to build several ‘millennial clocks’ over the course of time, and a site for another has been purchased atop a mountain in eastern Nevada, adjacent to Great Basin National Park.

By its nature, the clock is both a conclusion—of a long process of human thinking, making and acting—and a starting point, for a long future, the contents of which are uncertain, the opportunities of which are infinite. Stewart Brand observed, ‘This present moment used to be the unimaginable future’.

As a symbol for the past, present and future of human ingenuity, the Clock of the Long Now is a fitting device to represent the modern world and all of its milestones. As Danny Hillis has said, ‘Time is a ride—and you are on it’.

David Rooney (@rooneyvision)

Putting a piece of Cameroon in the Science Museum

Charlotte Connelly is a Content Developer on Information Age, a new exhibition opening in 2014. She works on stories about mobile phones, radio and television. Diana McCormack and Esther Sharp are conservators based at the Science Museum’s stores at Wroughton.

This week I’ve headed up to Manchester to talk about a tiny part of Information Age at the biggest ever history of science conference. Together with some other people from the Information Age team I’m running a special session about communications technology in Africa, with a special focus on Cameroon.

Last year a small group of us were lucky enough to go to Cameroon on a field trip to collect a range of objects for the museum that show how mobile phones have affected peoples’ lives. Just like in Britain, the mobile phone means that people organise themselves differently now that they’re constantly connected.

But, in Cameroon telecommunication technology used to be very expensive and difficult to access for most people, and now many more people can own and use a mobile phone making communication much easier. Although we collected lots of different kinds of mobile phone technologies I want to tell you about just one of objects we collected.

Emmanuel’s call box in Bamenda, Cameroon (Source: Science Museum / Sjoerd Epe Sijsma)

Emmanuel Bongsunu lives and works in Bamenda, in the English speaking part of Cameroon. He set up his first call box business in the late 1990s, very soon after mobile phones were introduced into the country. His call box tells the story of how the business evolved over time. In the picture you can see the original part of the call box – the small yellow box at the front that he would have sat behind, probably under an umbrella. As the business grew so too did his call box until eventually it was big enough to stand in, and even had its own electricity supply. When we spoke to Emmanuel he offered to sell us his call box as it would allow him to get a brand new one made to meet his needs today. It was such a great example that we couldn’t resist – even though getting such a big object back to the UK was going to be tricky.

A local carpenter helped us by building enormous crates to put our objects in, and his team also helped us to dismantle this large item. It was difficult to watch it being taken to pieces, and I made endless notes and labelled each part carefully so we would know how to put it back together afterwards.

Our crates ready to be taken to the port and shipped to the UK (source: Charlotte Connelly / Science Museum)

A few weeks ago I travelled to our stores at Wroughton to work with two of the Science Museum’s conservation team to finally bring the call box back to life. Diana McCormack and Esther Sharp have written about the part they played in reconstructing this rather dilapidated object. Here’s what they had to say:

When this item first arrived at Wroughton we froze it to eliminate any unwanted pest activity, after that it arrived in the conservation laboratory in its disassembled state. We decided to give the object a relatively light clean and to make only necessary repairs to the structure to allow it to be put back together in a stable condition.  Running repairs and rough edges were all part of the object’s history and we wanted to preserve this, making it look too clean or new would not give a true impression of its working life, or the piecemeal way in which it had been constructed.

We did a light surface clean to remove some insect debris and thick soiling that had built up during transportation. Original nails also had to be removed where they were sticking out from the timbers as they were usually bent and corroded and would get in the way of the reassembly, as well posing as a safety hazard to the team. We used modern fixings in the re-build instead, as this involved putting the timbers under less stress and also means in the future it will be obvious which bits are the original object, and which bits we added. Anything we added to the object has been carefully recorded.

Esther and Diana working on reconstructing Emmanuel’s call box (source: Charlotte Connelly / Science Museum)

Some timbers had to be repaired for the structural integrity of the object; in these cases the damage had been caused entirely through the deconstruction process.  The work included ‘consolidating’ the feet of the object to prevent any of the original wood being lost and to protect them during transport to the gallery. Working on the roof was quite challenging, and we built a special support so that it could be worked on upside-down. We haven’t put the roof back on yet because it’ll be easier to transport it back to London in two pieces ready for the display.

Keep your eyes peeled for future posts about how we’re working with Cameroonians based in London to decide together how the various objects we brought back should be displayed.

Beyond the mouse – the future of computer interfaces

Chloe Vince, volunteer on the Information Age project takes a look at the humble computer mouse, Douglas Englebart’s best-known contribution to modern computing.

Since its invention in 1963, the computer mouse has become an iconic image of personal computing. It was designed and developed by visionary engineer Douglas Engelbart who recently passed away on 4th July 2013 at the age of 88.

This early version of the computer mouse bears very little resemblance to those that we use today – it began as simply a wooden shell encasing a circuit board attached to two wheels which allowed movement across a surface. It was the wire that extended from the wooden shell and connected it to the computer that gave it is resemblance to its namesake – christening it a ‘mouse.’

A replica of the first ever computer mouse designed by Douglas Engelbart invented in 1963 and patented in 1970 (Source: SRI International)

Whilst the function of the mouse has remained the same since this initial model, the design has become much more streamlined. In 1972 computer engineer Bill English replaced the wheels for a ball, allowing the mouse to move in any direction. However this design soon encountered problems when dirt accumulated on the ball and restricted its use and as a result, in 1981 the mouse underwent another redesign.

It was then that engineers at technology company Xerox developed the first optical mouse, which worked by using focused beams of light to detect the movement of the mouse relative the surface it was on. In successive years, the combination of reduced cost in equipment and the progression in optical technology provided us with the optical computer mice that are used widely today.

The computer mouse used with the Apple G4 computer. Source: Science Museum / SSPL

The computer mouse used with the Apple G4 computer. Source: Science Museum / SSPL

While computer mice have retained their popularity with desktop computers and laptops, more intuitive computer interface technologies started becoming favoured on tablet computers and smart phones.

In the early 1990’s, the stylus pen began to be used widely, particularly with smart phones and message pads. Shortly after, the pen was lost and multi-touch screens became the most popular means to interact with these devices. These screens can detect two or more points of contact on an interface so users can rotate, pinch and zoom in on graphics – something you may be used to doing on your mobile phone.

Apple Newton Message Pad, part of the Science Museum’s collection, used a stylus for the user to interact with the screen. (Source: Science Museum / SSPL)

Apple Newton Message Pad, part of the Science Museum’s collection, used a stylus for the user to interact with the screen. (Source: Science Museum / SSPL)

This technology is so effortless to use it is difficult to think of how this interaction can become any easier – but what if you didn’t have to do anything at all? What if all you had to do was think about what you wanted your computer to do?

Computer tablets and smart phones used today mostly use a combination of multi-touch screens and voice recognition software. (Source: Flickr user ‘Exacq’ under creative commons license)

This month, scientists at the University of Washington have published findings showing that patients who had a thin layer of electrodes placed in their brain were able to move a cursor on a computer screen by demand by just thinking about it. Although in the early stages, this technology has the potential for users to communicate with computers using only their thoughts to control the commands on the screen.

While the idea of computers interpreting our thoughts may seem like a daunting prospect for most, patients suffering with severe forms of paralysis could find this research to be a life-line, allowing them to communicate with people via computers for the first time.

At the moment it is unknown whether this technology will be taken further commercially. Do you think it has the potential to be used at home or work to improve our lives? Or do you think this could take our relationship with computer technology too far?

A replica of Englebart’s mouse prototype will be on display in the Science Museum’s new Information Age gallery, opening in September 2014.

“Love to Soph”, hidden Morse messages from the SS Great Eastern

Jennifer Bainbridge, Conservator on the new Information Age gallery, writes about the conservation of Morse code tapes from the SS Great Eastern, 1865, a ship which undertook the laying of transatlantic telegraph cable. John Liffen, Curator of Communication, provides details of transcription.

As one of the conservators working on the new Information Age gallery, opening in September 2014, I handle, document and carry out treatments on objects destined for display.  Working so closely with artifacts means I am often in the lucky position of discovering new quirks or secrets, as I was recently reminded when undertaking conservation of some Morse code tapes from the S.S Great Eastern voyage of 1865.

Morse code tapes before treatment (Science Museum / Science & Society)

Looking at the tapes on a shelf in our Telecommunications Store, sitting alongside larger and grander objects, they appeared deceptively small and manageable, while at the same time they held the promise of untold stories.  Curator of Communication, John Liffen, informed me that within living memory at the museum the tapes had never been unravelled and no transcription of the message existed. It was now my job to enable this task! Firstly, I had to determine the object’s condition. Wound round an old paper envelope core the tapes were overlapping as they were coiled round and round.

While providing a compact means of storage, the tapes looked under stress.  They were, however strong enough for unravelling to take place.  The unwinding was quite a slow process as it turned out there were nine tapes wound together, with some being very lengthy.

You can see why the tapes were wrapped around an old envelope, they’re a little unwieldy when unwrapped. (Credit: Jennifer Bainbridge)

Once unravelled, the tapes were lightly cleaned with Smoke Sponge, a natural vulcanised rubber which gently picked up dust and dirt.  The tapes then needed to be humidified to relax the bends and creases caused by having been rolled.  Direct moisture causes cockling of paper and potential running of inks, so instead the paper was rested on a one-way permeable membrane to allow vapour, rather than water though.  Once lying flat the tears were repaired using heat set tissue, activated with a heated spatula.

With the tape repaired John then stepped in to commence the transcription. (Credit: Jennifer Bainbridge)

The main problem encountered at the transcription stage was that the dots and dashes inked on the tape can at times be ambiguous, with a dot often looking like a dash and vice versa.  As John says,

“To a twenty-first century researcher much of the Morse on the tapes translates as random letters. However, in places recognisable words can be read. On piece 1, the phrases ‘still in Vienna have red red’ and ‘none from Paris’ can be seen. Piece 6 was indecipherable, but when the tape was inverted the phrase ‘concludes lead iron cable’ was found within a string of Morse letters. This is more promising as part of a possible message. Most intriguingly, on piece 4 can be found ‘love to Sophbin’. Presumably ‘Sophie’ is the intended word but the Morse clearly shows a ‘b’ after the letter h. Whoever Sophie was, how did she come to be on board the Great Eastern during its cable-laying voyage?”.

The Turing Tour on Twitter

Curator David Rooney is preparing to take our Twitter followers on a rather unique tour.

Last June, we opened our Codebreaker exhibition, which reveals the life and legacy of a truly remarkable man, Alan Turing. The opening coincided with Turing’s 100th birthday, and over the last 12 months it has been a pleasure to read your comments and welcome so many of you to our exhibition.

To anticipate Turing’s birthday this year, I’ll be giving a live tour of the exhibition via Twitter on Tuesday 18th June between 18.00-18.30 BST. You can join in by following #TuringTour and tweeting your questions to @sciencemuseum.

After the tour, from 18.30-19.00 BST, I will be answering your questions about Turing and our exhibition on Twitter. Send your questions to @sciencemuseum or leave them in the comments below. You’ll need to be on Twitter to see my answers as I’ll be replying through the @sciencemuseum twitter account.

A Portrait of Alan Turing from the National Physical Laboratory archive

A Portrait of Alan Turing from the National Physical Laboratory archive

I hope you can join me for our #TuringTour next week to discover more about the life and legacy of this extraordinary man.

Mobile technology: past, present and future

This blog post is writted by Chloe Vince, volunteer for Information Age. Information Age is a brand new communications gallery opening in 2014. 

“Joel, I’m calling you from a ‘real’ cellular telephone. A portable handheld telephone.”

These words, spoken by Martin Cooper – a senior engineer at Motorola, to Joel Engel – a competing developer at the company Bell Labs, began the first ever conversation to be had on a mobile telephone.

It was 40 years ago that Martin Cooper, who has since become known as the father of the mobile telephone, made that call on a Motorola DynaTAC – a device 9 inches tall, 5 inches deep and weighing 28 ounces – truly a ‘brick’. However, it was still not until what has become known as the ‘digital decade’ between 1993 and 2003 that the mobile phones really took off commercially.

The Motorola 8800X ‘block phone’ launched in 1993 at the beginning of the ‘digital decade,’ (Source; Science Museum)

Since then the mobile phone has advanced significantly – not least of all in size and design. Using mobile telephones as a means of calling your friends seems to have become inconsequential with the use of mobile internet, maps, text messaging, music and access to various other applications on-the-go. Which leaves me wondering – where next? How can mobile phone technology developer even further in the next forty years?

The Motorola StarTAC mobile phone launched in 1996 was the first ever ‘clamshell’ design phone, and was one of the first mobile phones to succeed commercially – selling around 60 million. (Source: Science Museum / SSPL)

The Motorola StarTAC was the first ever ‘clamshell’ design phone. Launched in 1996, it was one of the first mobile phones to succeed commercially. Source: Science Museum / SSPL

Several communication companies, such as Telstra are currently trialling the use of mobile phones alongside health monitors, for example heart rate monitors attached discreetly to elderly patients, to transmit real-time health data to your GP enabling them to respond quickly to any abnormal activity. This technology would also have the potential to screen for major illness every time it takes a reading. Can you imagine how many lives could be saved rather than waiting five years between health screenings? Not to mention the time and money saved from reduced face-to-face check-ups and appointments.

But let’s take a step back for a moment – is this all good news? Mobile phone companies already have access to a lot of your personal information – most call and text message records are retained for at least a year and GPS services allow mobile networks to trace where your phone is used. Do you want mobile phone companies to have access to our health data too? Or do you think the potential health benefits outweigh the possible privacy risks?

With so much progress being made since that first telephone call in 1973, the future of mobile phone technology seems limitless. What do you think the future holds?

First Time Out…second time around

Katie Maggs, Curator of Medicine at the Science Museum, writes about the collaborative museums project, First Time Out

A while ago the Science Museum took part in a project called First Time Out – where museums put on display a ‘treasure’ from their stored collections that had never before been seen in public. Well we’re giving it a go again – but this time the project is larger than ever. Ten museums, from all over England, have paired up to swap objects from their collections, with the Science Museum partnering with the Discovery Museum in Newcastle (a great day out – go visit!).

We’ve chosen a rather splendid set of ten ivory mathematical puzzles that was made in China and exported to Britain in the mid-late 1800s.

Amongst the puzzles the set contains is a tangram. A sensation when introduced to Europe in 1817 - tangrams are made up of several pieces known as ‘tans’ that can be assembled to make different shapes – according to problems posed by a picture book.
Amongst the puzzles the set contains is a tangram. A sensation when introduced to Europe in 1817 – tangrams are made up of several pieces known as ‘tans’ that can be assembled to make different shapes.

 In July, all the museums are swapping objects with their partners. We’re very excited about the early light-bulb and light switch that will be heading down from the Discovery Museum.

Newcastle was a hotbed of activity during the development of electric lighting, with pioneers such as Joseph Swan based there. (Image courtesy of Discovery Museum, Newcastle-upon-Tyne).

It’s strange to think on the 4th July all ten objects will be hitting the road, crossing paths up and down the country, until they reach their temporary new home. And there’s some seriously amazing objects that have been uncovered. The bone model guillotine from Peterborough Museum, and the Natural History Museum’s tattooed dolphin skull are pretty remarkable.

Previously lurking in Peterborough Museum’s store is this model guillotine made from animal bone by prisoners of the Napoleanic Wars. (Credit: Photo John Moore, Vivacity Culture and Leisure)

I think it’s useful for museums to draw attention to material in store – both to explore the strangeness and explain the significance of holding material in storage for perpetuity, as well as to highlight the particular riches to be found behind the scenes.  Objects of course convey multiple meanings. Museums as well aren’t homogenous, so perhaps the most fascinating aspect of the project are the different perspectives each partner brings to the same object.

From a personal point of view, it’s been great working on First Time Out. Part of the fun was in selecting potential object candidates to be displayed, it was a great opportunity to look beyond the usual artefacts I work with (medical stuff) and explore collections I don’t usually get my hands on such as maths or astronomy colletions pictured here within Blythe House. (Credit: Laura Porter)

First Time Out opens with home objects on display from 6th June. You can see the Discovery Museum’s objects on display in the Museum from 5th July – until the beginning of August.

60 years of conquering Mount Everest

Dr Helen Peavitt, curator of Consumer Technology, writes about the technology behind sixty years of conquering Mount Everest.

At 11.30am, on this day (29th May) in 1953, Sir Edmund Hillary and Tenzing Norgay became the first people in the world to reach the summit of Mount Everest. They were part of the expedition team led by John Hunt. Despite the relative ‘ease’ with which the summit is climbed today by increasing numbers of people, the magnitude of the 1953 achievement cannot be underestimated. The mountain still maintains its mystique and reasserts its perilous nature during each climbing season, with an average of one death for every ten successful attempts on the summit.

The Himalayas. Mount Everest (8846m) and Nuptse (7841m) peaks.

The Himalayas. Mount Everest (8846m) and Nuptse (7841m) peaks. Credit © DEA / BERSEZIO / Universal Images Group / Science & Society Picture Library

The infamous character of the Himalayan peak began in 1852, when George Everest’s Great Trigonometrical Survey of India established peak ‘b’ as the survey team first called it as the highest mountain in the world. Straddling Nepal and Tibet – both secretive, inaccessible countries at the time – it was perhaps inevitable that it would enter the imagination of many by providing another unknown, uncharted territory to explore. After the Tibetan government opened up the country to the British in the 1920s, attempts on the mountain’s summit from the north side by a rash of British-led teams began. The successful 1953 party scaled the mountain from the south side.

Theodolite used by the Survey of India team to measure peak ‘b'.

Theodolite used by the Survey of India team to measure peak ‘b’. Credit: Science Museum / Science & Society Picture Library

The Science Museum holds a number of artefacts from some of the more well-known attempts on the summit. These reveal both the very private and the public nature of climbing the mountain. Although Hilary himself commented: ‘Nobody climbs mountains for scientific reasons. Science is used to raise money for the expeditions, but you really climb for the hell of it’, much of the equipment developed for the 1953 expedition used cutting-edge technology. For example, the Pye wireless equipment used, including the walkie talkie in the image below, was specially adapted by Pye for the extremes of weather and temperature experienced on the mountain. This enabled the team to receive broadcasts from the world outside and to communicate with camps up to two miles away.

Pye radio set used on the successful 1953 expedition.

Some of the Pye radio equipment used on the successful 1953 expedition. Credit: Science Museum / Science & Society Picture Library

An oxygen cylinder from the British 1922 Everest Expedition, shows how even the air we take for granted has to be supplied for most climbing teams at such high altitude. The oxygen levels above 8,000m in the mountain’s Death Zone, are so low that the body uses its store of oxygen up faster than it can be replenished by breathing.

Oxygen cylinder from the British 1922 Everest Expedition, shown with a modern oxygen cylinder and breathing mask, similar to those used in the successful 1953 expedition.

Oxygen cylinder from the British 1922 Everest Expedition, shown with a modern oxygen cylinder and breathing mask, similar to those used in the successful 1953 expedition. Credit: Science Museum / Science & Society Picture Library

Many of the other Everest-related objects in our collections are more personal items of clothing. There are butter-soft silk gloves and a pair of special lightweight double clinker nailed climbing boots from the 1933 expedition; and a fibre jacket from a 1978 climb – the first successful ascent without bottled oxygen.

Silk inner glove used on an Everest expedition in 1933.

Silk inner glove used on an Everest expedition in 1933. Credit: Science Museum / Science & Society Picture Library

Whilst these objects are all in the Museum’s stores, a lurid waterproof jacket and trousers by Karrimor, using Gore-Tex was worn by Rebecca Stephens, the first British woman to climb Everest on the 40th Anniversary Expedition in 1993; is on show in the Challenge of Materials gallery.

Rebecca Stephen’s jacket and trousers from the 1993 expedition.

Rebecca Stephen’s jacket and trousers from the 1993 expedition. Credit: Science Museum / Science & Society Picture Library

There’s also a pair of Indian puttees belonging to Dr Tom Longstaff from the 1922 expedition – the first which set off with the expressed purpose of reaching the summit. Longstaff advised against the expedition’s third attempt on the summit during which seven were killed by an avalanche. Many of these objects form poignant and intimate reminders of the very personal nature of climbing the most famous mountain in the world.

Hidden Histories of Information

Tilly Blyth, Keeper of Technologies and Engineering, writes about the hidden histories of information. Information Age, a new £15.6m communication gallery, will reveal how our lives have been transformed by communication innovations over the last 200 years.

Our new gallery on information and communications technologies, Information Age, will open in Autumn 2014. It will look at the development of our information networks, from the growth of the worldwide electric telegraph network in the 19th century, to the influence of mobile phones on our lives today.

Artists impression of the GPS Satellite model

Artists impression of the GPS Satellite model

One of the challenges of exhibiting the complex, and mostly intangible, world of information in a museum context is how you bring together the technology with the people involved and the information shared. The history of information is not just a neat history of devices. The telegraph instruments, radio and televisions, computers and mobile phones all reflect the material culture of information, but the history and future of information is much more complex.

One approach for dealing with this complexity is to look at how users, as well as innovators, have developed information and communications networks. Through personal stories we can connect visitors to the lived experience of technological change and reveal the significance of these networks to our ancestors’ lives.

As part of this approach we are conducting some new oral histories. We have recorded Gulf War veterans discussing their experience in 1991 of navigating around the desert both with, and without GPS. We have talked to the original engineers who set up Britain’s first commercial mobile phone networks for Vodafone and Cellnet in 1985. We will be talking to those who created and used the world’s first computer for commercial applications, the Lyons Electronic Office (LEO 1) in 1951. We have also interviewed some of the women who worked at the last last manual telephone exchange in Greater London, the Enfield Exchange in North London.

Women operators at the Enfield telephone exchange, October 1960.

Women operators at the Enfield telephone exchange, October 1960.

A lovely example of one account if this interview with Jean Singleton, a telephone operator who worked at a few different telephone exchanges, including Enfield when it was still a manual exchange. Jean left school at 15 when she started working for the GPO. Here she describes what made a good telephone operator.

We hope that detailed personal accounts like these will enthuse our audiences, reveal histories that are often not formally documented and show how centuries of ‘new’ information and communication devices have changed people’s lives.

Artists impression of the GPS Satellite model

Science Museum enters the Information Age

Charlotte Connelly is a Content Developer for Information Age, a new communications technology gallery opening in September 2014.

Last night the Science Museum announced exciting details about a new £16m communications gallery, Information Age, which will open in September 2014.

Artist’s impression of the Cable Network exploring electric telegraph.

Artist’s impression of the Cable Network exploring electric telegraph. Image credit: Science Museum / Universal Design Studio

The gallery will be a celebration of information and communication technologies. We’re already working on cutting edge interactive displays and participatory experiences that will reveal the stories behind how our lives have been transformed by communication innovations over the last 200 years.

Hundreds of unique objects from the Science Museum’s collections will go on display, many of which have never been seen before. They will include the BBC’s first radio transmitter 2LO, the BESM-6, the only Russian supercomputer in a museum collection in the West, and a full sized communications satellite.

Laying the first transatlantic telegraph cable in 1858 proved to be a tricky challenge to overcome. (Source: Science Museum / SSPL)

In Information Age we tell some of the dramatic stories behind the growth of the worldwide telegraph network in the 19th century and the influence of mobile phones on our lives today. Visitors can uncover stories about the birth of British broadcasting and learn about pioneering achievements in the development of the telephone. The role of satellites in global communications and the birth of the World Wide Web will also be explored in the new gallery.

Not only are we working hard behind the scenes of the Museum, we’ve also been working with lots of other organisations to develop the gallery. For our mobile phone display, we have a great selection of objects collected in Cameroon – look out for a blog post all about that coming soon! We’ve been working with Cameroonian communities in both Cameroon and the UK to decide how these stories are displayed.

We’ve also interviewed women who worked on the manual telephone exchange at Enfield in North London. Their stories have been selected by young women from the same area to be included in the gallery.

Our Curator of Communication, John Liffen, looking at a section of the Enfield exchange when it was installed in the Enfield Museum (Source: Hilary Geoghegan)

Watch this space to discover more about Information Age as the team will be writing regular blog posts about their work on the gallery to keep you up to date. Add your comments below to tell us what you would like to find out about.