Tag Archives: biology

‘Doctor, are you willing, to try this Penicillin?’

Selina Hurley, Assistant Curator of Medicine, takes a look at the story behind a new addition to our collections.

One of the most enjoyable parts of a curator’s job is acquiring objects which become part of the national collections. Not only do we go out and actively seek objects but we also get offered some real gems. Recently arrived at the Science Museum is this rather wonderful object.

Wooden chest used by Major Scott Thomson, RAMC, to transport penicillin supplies to North Africa during the Second World War, 1939-1945.

Wooden chest used by Major Scott Thomson. Credit: Science Museum

Major Scott Thomson (1909-1992), a bacteriologist, used this chest was used to carry supplies of penicillin to combat gas gangrene during the Second World War.

Penicillin sample, London, 1943 ( Science & Society Picture Library )

Penicillin sample, London, 1943 ( Science & Society Picture Library )

Scott Thomson’s career during the Second World War began as Pathologist to various military hospitals until 1943 when he was appointed by the War Office to be bacteriologist to the Penicillin Research Team. Thomson was posted to Algiers in May 1943 with surgeon Ian Fraser after under going special training at Oxford with Howard Florey.

On returning to Britain with the successful results of his trials, a decision was taken by the MRC Penicillin Committee to concentrate supplies of penicillin in one area of main battle activity in Italy. In December 1943 he was posted to Monte Cassino and according to his obituary in the Journal of Medical Microbiology he was responsible for all of the world’s supply of penicillin during those months – a fact his daughters remember him retelling.

Manufacturing penicillin, 1943 ( Science and Society Picture Library )

Manufacturing penicillin, 1943 (Science & Society Picture Library)

Like many of his contemporaries, Scott Thomson talked little about his time during the Second World War. However, I was lucky enough to meet Major Scott Thomson’s family who delighted me with the snippets of information that they had about his experiences.

Consisting of just five people, the Penicillin units were often at the back of every march, considered at the lower end of the army hierarchy. The lines between Allied and Axis forces were often so blurred that senior Axis officers wandered into the Allied camp.

Scott Thomson believed that the medical profession’s job was to cure and bacteriology was the main way of doing this and focussed his research into antibiotics. In the late 1960s, his daughters remember him talking about the overuse of antibiotic resistance – a subject which is always in the news.

By far, my favourite snippet the family were kind enough to share was the lyrics to Song for Penicillin which may have been penned by a German friend of Thomson with German, English and Italian lyrics. Although the tune is not known, but believed to be based a popular German oompah song. I’ll leave you with the chorus of the song:

German Doctor, are you willin’?

Go and try this Penicillin

This is something else than killin’ – Penicillin!

Penicillin! Penicillin!

Collecting synthetic biology – an iGEM of an idea

Collecting stuff is generally the bit I like most about my job. That’s probably why I’ve got a bit over excited about the new acquisitions we’ve made related to synthetic biology – from no other than Tom Knight widely described as the “father” of the discipline.

Synthetic biology is research that combines biology and engineering. Sounds like genetic engineering by another name? Well yes, but it goes much further. It looks to create new biological functions not found in nature, designing them according to engineering principles.  Some see the field as the ultimate achievement of knowledge, citing the engineer-mantra of American physicist Richard Feynman, “What I cannot create, I do not understand”.

Biofilm made by the UT Austin / UCSF team for the 2004 Synthetic Biology competition. From drugs to biofuels the potential applications are huge. (Image: WikiCommons)

Now like a lot of biotech, synthetic biology isn’t particularly easy to collect or represent through objects – as it’s the biology that’s interesting and most of the ‘stuff’ used in research is entirely indistinguishable from other biological equipment e.g. micropipettes and microwells.  

What we’ve acquired are a number of iGEM kits – hardware consisting of standardised biological components known as BioBricks™ . Students competing in iGEM are sent these kits to engineer new applications. Check out some of the former winner’s projects: Arsenic Biodetector, Bactoblood, E. Chromi.

Biological lego – parts that have particular functions and can be readily assembled. The kits document a fascinating ten year period in the discipline of synthetic biology – starting from this basic aliquot kit sent out when iGEM first launched c.2002. (Image: Science Museum)

The origin of these objects and the idea for BioBricks™ is rather curious. They didn’t emerge from biology – but from computer science. Tom Knight was a senior researcher at MIT’s Computer Science and Artificial Intelligence Laboratory. Tom became interested in the potential for using biochemistry to overcome the impending limitations of computer transistors.

Knight Lab: Tom set up a biology lab in his computer science department and began to explore whether simple biological systems could be built from standard, interchangeable parts and operated in living cells. That led to setting up iGEM.

From aliquots to paper based DNA to microwells – the kits show the technological change and sheer complexity of distributing biological components to teams competing around the globe.

In 2008 - the kits trialled paper embedded DNA via these folders - but it didn't quite work out. The kits do, however, represent an important ethic - that of open-sourcing in science. Students collaborate and contribute to adding new biological parts. (Image: Science Museum)

Suggestions for other synthetic biology stuff we could collect gratefully received!