Happy Cosmonautics Day!

Julia Tcharfas, Curatorial Assistant for our upcoming Cosmonauts exhibition, reflects on over fifty years of manned space flight.

I am thrilled to be part of the Science Museum team working on a new exhibition celebrating the achievements of the Russian space programme. Cosmonauts: Birth of the Space Age will bring together many unique artifacts that have never before been seen outside Russia, exploring some of the most remarkable and important stories from the dawn of the space age to Russia’s present leading role in space science and exploration.

Telling the story of the Cosmonauts is an important reminder of the remarkable achievements made by humans in little more than a century of scientific experimentation, cosmic speculation and daring risks. For someone of my generation, these achievements are regarded as an everyday reality. Humans now maintain a permanent presence, living and working in orbit, and so far over 500 international citizens have traveled to space, including cosmonauts, astronauts, taikonauts, as well as engineers, doctors, biologists, teachers, politicians, and even tourists. Every one of these space travelers owe their experience to the early work of the Russian Cosmonauts, and perhaps to one special pilot in particular.

53 years ago, on this day, April 12th, 1961, the Soviet pilot Yuri Gagarin inaugurated the era of manned spaceflight when he travelled into outer space in a rocket, completing a single orbit around the Earth in 108 minutes.

Cosmonaut Yuri Gagarin aboard the Vostok spacecraft.

Cosmonaut Yuri Gagarin aboard the Vostok spacecraft. Credit: Ria Novosti

Gagarin had been especially chosen from a group of 20 Russian pilots to be the world’s first cosmonaut. The decision was highly symbolic and political, and Gagarin’s working class upbringing and photogenic smile were just as important as his ability to withstand the extreme conditions of spaceflight.

The first 20 Soviet Cosmonauts. Yuri Gagarin is sitting to the left of Sergei Korolev the Chief Designer of the Soviet space programme.

The first 20 Soviet Cosmonauts. Yuri Gagarin is sitting to the left of Sergei Korolev the Chief Designer of the Soviet space programme. Credit: RIA Novosti

He was 27 years old the day of his legendary flight, dressed in a bright orange spacesuit and a helmet inscribed with ‘CCCP’ painted in red. The painted letters were a last minute addition, marking Gagarin as a Soviet citizen so that he would be recognized when found on his return.

He took off with the words ‘Poyehali!’ (Let’s go!).

Gagarin’s rocket was an adapted missile, called R-7 or ‘Semyorka’. The rocket carried his ‘Vostok’ spacecraft, which translates as ‘East’ in Russian. Vostok included a ball-shaped descent module – nicknamed the ‘tin can’, which Gagarin was strapped into and then shot into orbit like a cannon. With the passing years it seems astounding that such a seemingly rudimentary vessel enabled the first man to go to space.

As the news of the launch spread, people poured into the streets to celebrate the epic moment. My parents, who were children in the Soviet Union at the time of the launch, remember the day with great clarity. My mother recalls that the moment the news was announced people jumped to their feet and began to run. ‘Everyone was running and screaming, “We are flying!”’

In a way, the Soviet Union’s achievement turned fantasy into reality, for a moment transcending both the Earth’s atmosphere and the Cold War political climate of the era. Watching the cloud forms through his window, Gagarin told his ground control unit how beautiful the Earth looked.

Despite the worldwide attention, Gagarin’s flight had been shrouded in secrecy, especially his landing, the details of which were not released until the 1970’s. Most of the world was told that Gagarin was inside Vostok-1 in a complete process from take-off to landing. In fact, he came down by parachute separate from the descent module, landing safely on his feet. He famously greeted the first people he encountered with:

‘I am a friend, comrades, a friend.’

Gagarin returned to Moscow as a worldwide celebrity. Everybody wanted to hear what he had seen and felt. Invitations from many countries of the world began to pour in. Gagarin toured the world, always being welcomed with lavish parades and gifts. Along with his personal reputation, the event was commemorated by a myriad of monuments, art works, images, symbols, books, and memorabilia, which proliferated well beyond the Soviet Union. Some of those objects will be displayed in our Cosmonauts exhibition.

Yuri Gagarin, the first man in space, during his visit to France.

Yuri Gagarin, the first man in space, during his visit to France in 1963. Credit: Ria Novosti

Ever since 12 April 1961, the anniversary of Gagarin’s first flight has been celebrated in Russia and the former USSR countries as a holiday known as Cosmonautics Day. More recently the anniversary has been declared the International Day of Human Space Flight. The festivities are varied. A traditional ceremony takes place yearly in Russia, but new celebrations are still being imagined. A global event called Yuri’s Night has been organized since 2001 through social media. Such events are organized by people all over the world and include all night raves, film screenings, and other events to mark the occasion of the first human spaceflight.  However you choose to mark the occasion, this anniversary holds a profound meaning for all of us: it is a celebration of peace, cultural cooperation, and most importantly the idea that people can achieve extraordinary things.

Discover the dramatic history of the Russian space programme in our new exhibition, Cosmonauts: Birth of the Space Age, opening in November 2014.

In Conversation with James Lovelock

By Laura Singleton, Press Officer

To celebrate the opening of Unlocking Lovelock, our new exhibition on James Lovelock, 94, we were treated to a special audience with the great man himself (listen below to the full conversation), as he joined Roger Highfield, Director of External Affairs, to discuss his career and  his new book, A Rough Ride to the Future (Allen Lane).

Lovelock began by talking about his early visits to the Science Museum at the age of 6 and how his passion for science was inspired by his childhood love of steam engines, notably the one developed by the blacksmith Thomas Newcomen and the Flying Scotsman. He said that learning about science at the Science Museum was far more useful than learning in the classroom.

The conversation moved onto his early career at the National Institute for Medical Research in Mill Hill as he talked about his work on developing cures for burns during World War II, and how he preferred to carry out painful experiments on himself rather than rabbits.

He talked about how this work brought him into contact with Stephen Hawking’s father Frank, and the moment he held the infant Hawking in his arms.

Lovelock discussed his next career move to work in Houston for NASA, which provided the perfect opportunity for his inventive skills – creating instruments,‘exceedingly small, simple bits of hardware’ to go on NASA’s rockets. After three years, this paved his way to setting up his own laboratory back in the UK.

When asked whether he sees any scope for anyone succeeding as a lone scientist, he explained how much easier it was to work as an independent scientist years ago when there was less competition due to an overall lack of scientists in the UK at the time. He remains suspicious of committee and consensus led science.

Describing himself as ‘half a scientist, half an inventor’ he explained to the audience that invention is driven by necessity.

This process is ‘largely intuitive’, he said, and ‘the main advances in the world have not been driven by science, but by invention.’

The conversation moved from his work ‘re-animating’ frozen hamsters in a microwave to the importance of his electron capture detector, ECD, a remarkably sensitive instrument to detect trace amounts of chemicals, and gas chromatography equipment (featured in the exhibition). He talked about his home laboratory at Clovers Cottage where a lot of his experiments took place. The laboratory had a “Danger Radioactivity!” sign used to deter burglars.

The ECD helped hone his thinking about Gaia, a holistic view of the world, where all life on Earth interacts with the physical environment to form a complex system that can be thought of as a single super-organism.

Roger Highfield and Jim Lovelock then looked at the origins of his Gaia hypothesis, how his friend, novelist William Golding came up with the catchy title, his work on the theory with the American biologist Lynn Margulis, the opposition Gaia faced in the early days, notably from Richard Dawkins, and his Daisyworld computer model.

Later, when asked by an audience member to defend the theory against the opposing view by someone like David Attenborough, Lovelock replied that ‘To fight for Gaia is worth it’.

You can discover more about the Unlocking Lovelock exhibition in Nature, the Guardian or by watching our exhibition trailer.

Waiting for the end of the world with my father, James Lovelock

As a new exhibition on James Lovelock opens, his daughter Christine recalls her science-filled childhood and the night they sat up waiting for a comet to destroy the Earth.

Photo of James Lovelock in his laboratory at Coombe Mill. Image credit: Science Museum

Photo of James Lovelock in his laboratory at Coombe Mill. Image credit: Science Museum

When I was a child my father took us to the Science Museum in London. His favourite exhibit was the Newcomen steam engine, built in the early 18th century to pump water from mines. He told us how much the museum had inspired him when he was a child. Science had become the abiding passion of his life, and as we grew up it was the background to ours as well.

We lived for a while at the Common Cold Research Unit, where my father worked, at Harvard Hospital near Salisbury in Wiltshire, and even became part of the research. Whenever we caught a cold the scientists put on parties for us where we would pass on our germs, as well as parcels, to the volunteers who lived in the isolation huts.

My strongest memories of my father during this period are the conversations we had about scientific ideas, whether on country walks or at the dining table. We often had fun working out plots for stories, including one he helped me to write about some fossil hunters on a Dorset beach who stumbled on a fossilised radio set – with shocking implications for the established science of geology.

When we moved back to Wiltshire, he turned Clovers Cottage into the world’s only thatched space laboratory. It was full of interesting equipment, much of it home-made, including an electric Bunsen burner. The cottage used to have a skull and crossbones in the window, with the warning “Danger Radioactivity!” My father always said this was a good way to deter burglars.

Clovers Cottage in Wiltshire, 'the world's only thatched space laboratory', where Lovelock worked for Nasa in the 1960s investigating the possibility of life on Mars. Image credits: Christine Lovelock

Clovers Cottage in Wiltshire, ‘the world’s only thatched space laboratory’, where Lovelock worked for Nasa in the 1960s investigating the possibility of life on Mars. Image credits: Christine Lovelock

One evening in the 1960s, my father arrived home from a trip to Nasa’s Jet Propulsion Laboratory in California with some frightening news. A comet had been spotted that was expected to hit Earth that night. The Nasa astronomers back then didn’t have today’s computer technology and said there had been no time to go public with the news.

My father wasn’t worried about the potential disaster. His reaction was a mixture of apprehension, curiosity and excitement. As he said, “If it hits us and it’s the end of the world, we won’t know anything about it, but if there is a near miss, then we might see some amazing fireworks.” While the rest of Britain slept a peaceful sleep, we packed up the car and drove to the highest hill nearby.

I’ll always remember that night, when we snuggled under blankets in the darkness, waiting and watching for what might have been the end of the world. It didn’t happen, of course. The astronomers got it wrong, as my father expected they would, but in an odd – and unscientific – way we felt we had done our bit to keep the Earth safe.

James Lovelock and his daughter Christine collecting air samples in Adrigole, South-West Ireland, 1970. Image credits: Irish Examiner

James Lovelock and his daughter Christine collecting air samples in Adrigole, South-West Ireland, 1970. Image credits: Irish Examiner

As I grew older I began to help my father more with his work. One day I will never forget is when we went up Hungry Hill on the Beara Peninsula in Ireland in 1969. Our mission was to collect samples of the cleanest air in Europe, blowing straight off the Atlantic. My father then drove straight on to Shannon Airport, and flew with the samples to the United States.

On arrival, a customs officer thought my father was being facetious when he said the flasks contained “fresh Irish air”. An argument ensued in which the official demanded that the flasks be opened, which would have made the whole journey pointless. Fortunately, sense prevailed and the samples reached their destination safely.

Christine Lovelock is an artist who campaigns to preserve the countryside.

You can watch our Youtube video of James Lovelock talking about the inspiration behind his inventions and what the Science Museum means to him.

Win a walk-on-part in The Energy Show + a weekend break in London

Stand back and cover your ears – a trip to the theatre just got explosively exciting! The Energy Show is on tour around the country until July 22, when it returns to London for a spectacular final two weeks at the Science Museum.

To mark the launch of this fun-filled show, we’ve teamed up with The Sunday Mirror to give one lucky child (aged 7 – 12) the opportunity of a lifetime – a walk-on part in The Energy Show in London. This great prize includes three tickets for family or friends and an overnight stay at the four-star Cavendish Hotel.

Three runners-up will also win four tickets each to the show at their chosen tour venues. Visit sciencemuseum.org.uk/energyshow for details on dates and venues.

The Energy Show

How to enter
Q) Which of these is NOT a famous scientist?
1) Marie Curie
2) Albert Einstein
3) Simon Cowell

CALL 0900 586 4613 and follow the instructions (61p/min). Or TEXT SMHOL followed by a space then your answer (1, 2 or 3), your name, full address, postcode and email address to 85858 (£1/text).

Terms & Conditions

1. Lines close 11.59 pm on Saturday April 12, 2014. Landline calls cost 61p/min plus network extras max 2.5 mins. Payphones and mobiles will be higher. Texts cost £1 each plus one standard network rate message. Entries received after this date may not be counted but will still be charged. To decline marketing messages add NOINFO to the end of your text.
2. Employees of Trinity Mirror plc, Science Museum Group, associated companies, agents or anyone involved in the running of the competition are excluded from entering.
3. ONE winner (aged 18/over) drawn at random after lines close from all correct entries. Winner must be child’s parent/legal guardian, contactable by 17:00 April 21, 2014 and available August 2-3, 2014.
4. PRIZE: walk-on part for one child aged 7–12 in one performance of The Energy Show at London’s Science Museum, 12.00 on winner’s choice of either Saturday August 2,  2014 or Sunday August 3, 2014. Includes performance tickets for 3 family members, overnight stay for 4 the night before the show, plus 4 Science Museum tickets to Red Arrows 3D experience. Winner and parent/guardian required to attend rehearsals and health & safety briefing at 09.00 on the day of the show. By entering Winner agreed to take part in any media activity carried out as part of this competition including any post-competition publicity if required. The Science Museum will seek the necessary consents for filming.
5. THREE Runners-up: each 4 standard tickets giving one admittance to The Energy Show at any tour venue of winner’s choice (subject to availability).
6. Travel, any other costs/expenses not included with any tickets (winner’s cost & responsibility)
7. Trinity Mirror Plc accepts no liability whatsoever for winner’s subsequent participation in this prize.
8. Prizes non-transferable, no whole/part cash alternatives.
9. Standard Trinity Mirror plc Rules apply, see www.mirror.co.uk/rules
10. SP: JMedia UK Ltd, SW4 7BX Helpline: 0844 800 1188

Where’s that huge iceberg headed?

Corrinne Burns blogs on ADIOS, a GPS enabled javelin which helps tracks icebergs. You can see ADIOS on display in the Museum’s contemporary science gallery.    

Why would you put a GPS tracker onto a glacier? These positioning devices are more commonly associated with cars. It’s not like glaciers are in any danger of getting lost – or of ending up in a field of bemused cows, for that matter.

Actually, there’s good reason why scientists track the movement of ice. The Antarctic Ice Sheet is the biggest unknown when it comes to predicting sea level change.

An iceberg breaking away. Credit: NASA

An iceberg breaking away. Credit: NASA

Glaciers move – we all know that. It’s natural. But as the ocean temperature rises, glaciers move at an increased rate. That’s because melting, triggered by the warming sea, causes the ice streams within the glacier to flow faster and faster.

And of course, as glaciers melt, the global sea level rises.

So this “flow velocity”, as glaciologists call is, can be used as a way to track rising sea levels. That’s why it’s so important to track the movement of glacial ice streams.

Hilmar Gudmundsson works at the British Antarctic Survey, keeping an eye on ice dynamics. He’s been putting GPS trackers onto glaciers for a while now. Traditionally, a helicopter lands a crew onto the glacial surface, and then they walk across the frostbitten landscape, implanting trackers as they go.

But Hilmar knows how dangerous walking on ice can be – deep crevasses await the unwary. So he helped to invent a rather unusual way to deploy such trackers, so that no human need even set foot on the ice.

The solution was ADIOS – the Aircraft-Deployable Ice Observation System. ADIOS is, essentially, a GPS tracker embedded within a 2.5-metre long javelin, designed to be dropped from an aircraft flying a few hundred metres above the ice. One such ADIOS device is currently on display in the Museum’s Antenna gallery.

ADIOS – the Aircraft-Deployable Ice Observation System. Credit: British Antarctic Survey

ADIOS – the Aircraft-Deployable Ice Observation System. Credit: British Antarctic Survey

ADIOS takes inspiration from technology originating from World War Two – the sonobuoy. These were floating sonar transducers, deployed by aircraft into the ocean to listen out for warships. Hilmar and colleagues adapted this wartime concept for the 21st century Antarctic – but glaciers do present some challenges that water does not.

For one, the electronics needed to survive the impact on hard ice – a polyethylene cushion and a spring help to protect them from impact forces of up to 1200G, and a parachute slows and stabilises ADIOS’ descent. You also need to consider the effects of snowfall – anything placed on the surface is likely to be covered in snowdrifts pretty quickly.

Those considerations led to the long, aerodynamic javelin-like design.

The GPS tracker itself is positioned towards the sharp nosecone-end of ADIOS, and, after landing, sits below the surface of the ice. It transmits through an antenna situated at the opposite end of the javelin – which, thanks to four “snow brakes”, remains above the snow surface. It is so long that it can remain uncovered even following thick snowfall, transmitting for up to two years.

Hilmar’s interested in part of Antarctica called the Pine Island Glacier, or PIG. His team deployed 37 ADIOS sensors onto the glacier in January of last year. PIG is significant because of all the icy regions on Earth, this glacier is showing the biggest changes in ice movement and thickness, so we need to keep an eye on it. “We can already see that the rate of ice flow is increasing, since we deployed those units,” says Hilmar.

Even more dramatically, a few months ago a 700 square km bit of PIG broke off, forming a massive rogue iceberg that is now further fragmenting and drifting towards shipping lanes. Two ADIOS’ sit on that rogue berg – not by coincidence. “We knew that this ice was breaking away from PIG – that’s why we put two ADIOS units on it,” says Hilmar. As the rogue iceberg has broken apart further, those units now sit on two different fragments – and are still sending back live data about position.

So, as well as telling us about glacial melt, ADIOS units can be used to track the movements of icebergs heading for shipping lanes. Will we see more air-deployed GPS trackers on icebergs around the world, then? “This is now tried-and-tested technology. There’s a lot of interested from other researchers, and we’ll let them use the design,” says Hilmar. “And for me – I’m relieved that it works!”

You can find out more about ADIOS, in the Science Museum’s contemporary science gallery from now until April 10, 2014. 

World must adapt to climate change, says IPCC

By Roger Highfield, Director of External Affairs

The world is ill prepared for an unknown climate future and must adapt to meet the challenges, according to a report issued today by the Intergovernmental Panel on Climate Change (IPCC) in Yokohama, Japan. You can read the press summary of the UN agency’s report here and the full report here, written by 309 authors and editors drawn from 70 countries.

Today’s report, which focuses on how there will be sweeping consequences to life and livelihood, and how to adapt to them, is the second of three in the IPCC’s fifth assessment of climate change.

The first instalment, released last year, covered the physical science of climate change.  The third, on how to cut emissions that drive climate change, comes out in April.

At the Science Museum, you can keep up to date with the issues surrounding climate change through a series of exhibitions, artworks and educational activities. Our interactive Atmosphere gallery, encourages visitors to learn about the work of early pioneers such as John Tyndall, uncover the secrets of ice cores and stalagmites, and wonder at the latest ideas for a low-carbon life. You can also play a climate themed computer game called Rizk.

To see how fiction has been inspired by climate change, download the Museum’s first novel, Shackleton’s Man Goes South, by Tony White. You can also discover the beauty, value and volume of ‘rubbish’ we produce in an upcoming exhibition, The Rubbish Collection – which will trace the journey of waste generated by staff and visitors to the Museum over a 30 day period.

James Lovelock in his laboratory.

James Lovelock in his laboratory.

Next week we will celebrate the life and 70 year career of James Lovelock – one of Britain’s most important living scientists, with an exhibition, Unlocking Lovelock: Scientist, Inventor, Maverick. The exhibition will feature highlights from a remarkable archive of images, manuscripts and audio-visual material acquired by the Museum in 2012 – providing visitors with a glimpse into life in Lovelock’s laboratory and his creative mind and charismatic personality.

The House of Commons Science and Technology Select Committee will publish a report on the public understanding of climate change later this week after holding a hearing in the Museum last year.

The Echo of Creation – Astronomers Hear the B of the Big Bang

Dr. Harry Cliff, Curator of our Collider exhibition and the first Science Museum Fellow of Modern Science explores one of the most important discoveries of a generation.

In what has been hailed as one of the most important discoveries of a generation, astronomers working on the BICEP2 telescope at the South Pole have announced that they have detected gravitational tremors from the birth of our Universe imprinted across the sky. The result is the first direct evidence for inflation, the theory that the Universe expanded unimaginably fast, an infinitesimal instant after time zero.

The BICEP2 telescope at the Amundsen-Scott South Pole station.

The BICEP2 telescope at the Amundsen-Scott South Pole station. Credit: BICEP2

The theory of inflation states that the Universe grew in volume by about a factor of at least 1078, a number so vast that it’s impossible to comprehend (its roughly equal to the number of atoms in the universe). This phenomenal expansion took place in an incredibly short time, in about ten billionths of a trillionth of a trillionth of a second, at a time when the Universe was cold, dark and empty. To put this in context, if the full stop at the end of this sentence were to grow by the same factor, it would end up about a hundred times larger than our galaxy.

Inflation is a crucial part of modern cosmological theories and solves many serious problems with the traditional Big Bang model, but so far there has been no direct evidence that it actually happened. However, inflationary theories predict that this violent expansion would have created ripples in space and time known as gravitational waves. These ripples would then have echoed through the cosmos, leaving a mark on the oldest light in the Universe, the Cosmic Microwave Background (CMB).

Discovered fifty years ago by the American radio astronomers Arno Penzias and Robert Wilson (who at first mistook it for pigeon poo in their receiver), the CMB is the remnant of the light emitted 380,000 years after the Big Bang, when the Universe cooled enough for atoms to form and for light to travel freely across space. The discovery of the CMB was one of the most important events in the history of science, providing convincing evidence that the Universe began in a violent hot expansion known as the Big Bang. This ancient light has been stretched from a searing hot 3000 Kelvin to a freezing 2.7 Kelvin by the expansion of space, leaving it as a faint microwave signal coming from the entire sky.

The BICEP2 telescope is based at the Amundsen-Scott station at the geographic South Pole, where temperatures plummet to below minus 70 degrees Celsius in the Antarctic winter and the base is buffeted by blizzards and gale force winds. Despite these incredibly hostile conditions, the BICEP2 telescope is in the perfect location to study the CMB.

The South Pole is around 3000 metres above sea level, and the driest place on Earth, meaning that there is relatively little atmospheric water vapour that would otherwise screen out the CMB signal. This comes with the added advantage that BICEP2 is able to scan the same small piece of sky all year round, by effectively looking straight down from the bottom of the planet to the point known as the celestial south pole.

BICEP2 astronomers spent almost three years scanning the CMB in incredible detail, but yesterday the freezing conditions and hard work paid off spectacularly as they revealed subtle twists in the CMB, a smoking gun for gravitational waves from inflation. In fact, the BICEP2 astronomers were surprised by just how strong the signal was. “This has been like looking for a needle in a haystack, but instead we found a crowbar,” said co-leader Clem Pryke.

Twists in the cosmic microwave background that provide evidence for inflation

Twists in the cosmic microwave background that provide evidence for inflation. Credit BICEP2

Although the result hasn’t been peer reviewed or published in a scientific journal yet, most astronomers agree that the findings look solid. The fifty-strong BICEP2 team have been sitting on their historic result since the end of 2012, and have spent more than a year checking and rechecking to ensure they have taken account of every possible effect, from gravitational lensing to space dust, which might have given a false result.

So what does this mean for our understanding of our Universe? The BICEP2 result is really three Nobel Prize-worthy discoveries in one. They have found the first convincing evidence that inflation really happened, giving science its first glimpse of the moment in which the universe came into being. Second, they have found the strongest evidence yet for gravitational waves, the last prediction of Einstein’s theory of general relativity to be verified, and something that astronomers have been searching for for decades. Third, and by no means least, this discovery demonstrates a deep connection between quantum mechanics and gravity, giving hope that we may one day find evidence of a theory of everything, a theory that would unite our theory of particles and forces with our theory of cosmology and gravity. This would undoubtedly be the greatest prize in science.

If confirmed by other observatories, this incredible result will go down in history as one of the most important scientific discoveries of the 21st century, eclipsing even CERN’s discovery of the Higgs boson in 2012. Nobel Prizes will almost certainly follow. More importantly, this result opens up a new window through which astronomers and cosmologists may, for the first time, glimpse the very moment of creation.

Explore more about astronomy in our Cosmos and Culture gallery and discover the mysteries of deep space in our Hidden Universe 3D IMAX film.

Designing Collider

We sat down with Pippa Nissen from Nissen Richards Studio to talk about her team’s work on our Collider exhibition.

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Can you tell our readers a little about NISSEN RICHARDS studio and the kinds of projects you work on?

We are a bit unusual as a design practice as we work in different sectors; architecture, theatre and exhibition. We love the way that they have slightly different rhythms and processes that all feed on each other. Exhibition design sits nicely between architecture and theatre; it’s about the space and form of different spaces (architecture), but ultimately is about a visitor experience in a timeline across these (theatre).

You went out to CERN several times for the Collider exhibition, what was your impression of the place?

We were completely bowled over by CERN – it was extraordinary as well as full of the ordinary. The sheer size and aesthetic was beautiful – both above ground and below. In the corridors and the warehouses that you arrive in – it felt as if everything was frozen in time from somewhere around 1970 with an austere and functional Swiss graphic language thrown in.

Below ground was like a science fiction film, or being in a giant Ferrari engine – stunningly beautiful and utterly functional.

We also loved the fact that people led normal lives that went on while they were working on such mind-blowing things; and how these clashed unexpectedly. One scientist for example had his kitchen organised so that he could still see the operational screens of CERN – so he could be eating breakfast, helping his children with their homework and watching a collision happening.

The humanness of the spaces also shone through – funny posters about the CERN lifestyle (dancing and singing clubs etc) or jokes pinned up next to an equation and technical drawing of the tunnel – how CERN was filled by thousands of people doing their job – all contributing to something cutting edge and important.

We were particularly taken for example by a scribbled note on a wipe board in the control room saying ‘Don’t forget to reset the undulators!’ next to a comic-book style joke cut out from a magazine about scientists.

What approach did you take in the exhibition design?

We had this amazing experience at CERN, being shown around by extraordinary scientists that were passionate about their work but incredibly friendly and clear in their explanations.

We had a real sense of this being a place where everyone was involved for the good of it all – at the forefront of science – like travelling in space, not knowing exactly what they were about to discover, which was incredibly exciting.

It was full of different people, of different nationalities, with conversations moving freely from English to French to Italian etc. It felt like a truly collaborative and non-hierarchical place.

That is what we wanted to capture – and we decided to base the experience for the visitor to the museum on the same idea – as if you were gaining access to these wonderful people and spaces that few get to see.

Early drawings of the Collider exhibition

Early drawings of the Collider exhibition

As a piece of design, I really enjoy the spatial rhythm of the exhibition; it takes you around the exhibition and helps you in what to look at, giving you clues and gestures, how spaces vary and change as you go through.

Exploring the corridors of CERN, Collider exhibition.

Exploring the corridors of CERN, Collider exhibition. Credit: Science Museum

I also love the graphic language developed by both Finn Ross the video designer (see more of Finn’s photos from his visit to CERN here), and Northover & Brown the 2D designers, which supplements our designs – adding a level of detail in a bold and photographic but abstract way: how the beam of the Collider becomes a character in your journey as a visitor.

There was a very diverse team working on Collider, including people from the worlds of theatre, design, museums and science. What was the development process like?

The “diverse-ness” of the team was hugely enjoyable but also a great challenge. If everyone in the team had been in one room, it could have been quite overwhelming.

There were video designers, lighting designer, sound designer, playwright, costume designers, and actors and there were also other consultants such as graphic designers, conservators, security experts, quantity surveyors, project managers, and of course the scientists and people from CERN.

To find a clear voice we decided to work through workshops; something that we have done before especially in the theatre where we work with many different artists.

This was a very enjoyable process – we would all be together in a room, brainstorm and slowly plot out the visitors’ journey as if we were making a film. We used flipcharts, models, photos, text, films etc that we pinned all round the rooms of various parts of the Science Museum.

Are there any particular highlights during the design process that stand out?

There are so many wonderful moments. But to pick a few; setting up a green screen in the Science Museum while Brian Cox made his cameo; going to the stunning underground spaces of the detectors and filming; and workshop-ing with our playwright and actors in a small rehearsal space in Whitechapel. We all realised that we were creating something quite special.

What has the reaction to the exhibition been?

The day after the exhibition opened we were on tenterhooks and rather perfectly, the Independent Newspaper ran a front-page story with a large picture of Peter Higgs with the headline “Intelligent design: ‘God Particle’ theorist opens sublime exhibition”.

Peter Higgs at the launch of the Collider exhibition.

Peter Higgs at the launch of the Collider exhibition. Credit: Science Museum

I went straight from the newsagent to the framers and now it has pride of place in our studio. The reaction from the press has been very positive with 5* reviews.

But our greatest praise is from visitors who say that they feel as if they have taken a trip to CERN, and understand both what the people are like, and a bit more about the science behind it.

Are there any other exhibitions/projects that inspired your work on Collider?

It is interesting that the work we talked about the most when making Collider – were theatre projects that we had worked on or we had visited. Ones where the audience moves around between events and their journey is tailored and twisted by using actors, musicians, video, props, and installations.

We have worked on a couple of these kinds of projects for Aldeburgh Festival. On “The Way to the Sea” we took over a village in Suffolk for a week, and staged two musical performances in different locations, while a 500 strong audience walked between locations coming across signs, poetry, actors, props, speakers, and installations.

My most memorable type of exhibition event that sticks in my mind and inspired me to study theatre design in the first place is over 20 years ago in the Clink (before it was developed). The artist Robert Wilson worked with a sound designer to create a series of stories that you wandered through as a visitor, each like exquisite tableau.

There were a series of these kind of events in the late 80’s early 90’s and I spent my student years assisting Hildegard Bechtler on a few of her pioneering projects, where she took over buildings to subvert the theatre and create more of a total experience for the audience from the moment they entered the theatre building. It is tremendously exciting to use this in exhibition design years later.

Do you think that the mixture of theatre and exhibition works?

I think that it really works, and for me it is about helping the visitor engage with the content of exhibitions. In a theatrical setting people can have an emotional sensorial connection – through sound, smell, touch – and once engaged they can spend time to understand and interpret the meaning of the objects or artefacts.

I feel that there is a lot of scope in this – and exhibitions are becoming different to what they used to be. It is now not enough to put some objects in a showcase and write a label – I learn from my own children that they often feel like they need a way in when visiting museums.

Ultimately it is all about the objects as they are the authentic elements. However we can help with giving them meaning through designing people’s experience.

We will continue to use elements of theatre in our work, and enjoy the relationship between what is real with its own set of history, and what we are adding to allow you in.

The Collider exhibition runs at the Science Museum until 5 May 2014 (tickets can be booked here). The exhibition will then open at the Museum of Science and Industry in Manchester from May 23 – September 28 2014 (tickets available soon here).

Happy 25th Birthday World Wide Web!

Tilly Blyth, Lead Curator for Information Age, reflects on how the World Wide Web came into existence.

It was 25 years ago today that the World Wide Web was born. Only a quarter of a century ago, but in that short time it has transformed our world. In a recent Great British Innovation Vote, musician Brian Eno said that ‘no technology has been so pervasive so quickly as the internet’.

On 12 March 1989, the British computer scientist Sir Tim Berners-Lee wrote his influential paper “Information Management: A Proposal” and circulated it to colleagues at CERN, the European Organization for Nuclear Research. Scientists from all over the world were brought together at CERN to conduct research, but Berners-Lee identified that there was a problem with the way information was managed and shared between them. His proposal suggested a way of linking documents through a system of hypertext.

Rather wonderfully, Berners-Lee’s boss, Mike Sendall commented that the proposal was ‘Vague but exciting…’ but he agreed to purchase a NeXT computer. The machine was to become the world’s first web server and Berners-Lee used it to build the first ever website. Today, the only evidence on the machine of its important history is a torn sticker that says: “This machine is a server. DO NOT POWER IT DOWN!!”

To celebrate the birthday of the Web, from today we are putting Tim Berners-Lee’s NeXT cube computer on display in our Making the Modern World gallery. In Autumn 2014 it will move into our new Information Age gallery, to play a leading role in the stories of the last 200 years of information and communication technologies.

Baroness Martha Lane-Fox (co-founder of Lastminute.com) visiting the Science Museum to unveil the NeXT cube – the original machine on which Sir Tim Berners-Lee designed the World Wide Web, at an event to mark 25 years since Berners-Lee submitted the first proposal for the web on 12 March 1989 at CERN.

Baroness Martha Lane-Fox visiting the Science Museum to unveil the NeXT cube – the original machine on which Sir Tim Berners-Lee designed the World Wide Web. Credit Science Museum.

Yesterday, we celebrated the arrival of the NeXT computer at the Museum and the impending anniversary, with a reception attended by Martha Lane Fox and Rick Haythornthwaite, Chair of the Web Foundation.

But a birthday for the Web is not just a chance to reflect on the past, but to look towards the future. What kind of Web do we want? Currently only 3 in 5 people across the world have access to the Web. Do we want a tool that is open and accessible to anyone? And do we want to control our public and private data? How can we ensure that the Web isn’t only a device for a few companies, but gives us all rights to achieve our potential? Through the #web25 hashtag Tim Berners-Lee is inviting us all to share our thoughts.

Discover more about how the web has shaped our world in the new Information Age gallery, opening in Autumn 2014.

From Earth to space in a Skinsuit

Julia Attias, a Research Assistant working at the Centre of Human and Aerospace Physiological Sciences (CHAPS), talks about her career in space science for our Beyond Earth festival this weekend. 

My name is Julia Attias and I’m a space physiologist. What does that mean? “Physiology” generally refers to the functions and processes of the human body. Space physiology involves the understanding of how the body functions in space, and particularly in an environment that has far less gravity than on Earth. It’s important to know how low gravity environments affect people taking part in space missions.

I became a space physiologist through completing a Masters degree in Space Physiology and Health at Kings College London in September 2012. The course is designed to help us understand the challenges that an astronaut’s body faces both in space and on return to Earth, such as muscle and bone loss, weakening of the cardiovascular system and visual disturbances.

During my masters dissertation, I started to research the “Gravity-Loading Countermeasure Skinsuit” (GLCS), funded by the European Space Agency (ESA). The Skinsuit was designed by a group of aerospace engineers at MIT, with the aim to recreate the same force that the body experiences through Earth’s natural gravitational pull. This way, if the Skinsuit is worn in environments of zero-gravity, the body should be protected from some of the issues mentioned above.

Testing the Skinsuit

Testing the Skinsuit

I’ve been studying the Skinsuit to see if it really does produce a gravity load similar to Earth’s, and if it could be used in the future alongside exercise activities to keep astronauts fit and keep their heart, muscles and bones strong in space.

Space travel is becoming of increasing interest in the UK, primarily owing to British astronaut Tim Peake, who will be flying to the International Space Station in 2015! During the next year, there will be many discussions about how to keep him healthy while in space.

I’ll be starting a PhD in October 2014 which will involve continuing my research with the Skinsuit to see how it might help tackle issues such as back pain and spinal elongation. This research will combine with other work conducted all over the globe to help keep astronauts like Tim Peake as free of physiological burden as possible for their return to Earth.

Unfortunately I won’t be at the Beyond Earth festival this weekend, because I’ll be testing the Skinsuit with ESA astronaut Thomas Pesquet!  We’ll be testing the Skinsuit in a weightless environment (not in space unfortunately!) through a parabolic flight. We will get into an aircraft which descends rapidly, creating up to 22 seconds of weightlessness at a time – it’s a bit like being on a roller coaster. The flight is to test the Skinsuit in a weightless environment – taking off and putting on the suit to ensure the simple things we take for granted on Earth are possible in zero-gravity!