Her Majesty The Queen sends her first tweet to unveil the Information Age

By Roger Highfield, Director of External Affairs

Her Majesty The Queen this morning opened the pioneering Information Age gallery at the Science Museum by sending her first tweet to the world, 76 years after The Queen’s first visit to the museum.

HM The Queen opens the Science Museum's Information Age gallery by sending her first tweet

HM The Queen opens the Science Museum’s Information Age gallery by sending her first tweet. Credit: Science Museum

The Queen and His Royal Highness The Duke of Edinburgh had earlier toured the landmark gallery, which explores the six networks that have transformed global communications, listening to personal recollections of people whose first experience of television was watching her Coronation in 1953.

Inviting Her Majesty to open the gallery, Science Museum Director Ian Blatchford remarked on how royalty had embraced communications technology from the day Queen Victoria took an interest in the invention of the telephone, which was demonstrated to her in January 1878 by Alexander Graham Bell at Osborne House, Isle of Wight.

“Your Majesty has followed in this tradition,” said Mr Blatchford while addressing around 600 guests including communications entrepreneurs, authors and experts, from Baroness Lane Fox, Hermann Hauser and Mo Ibrahim to Prof Steve Furber, James Gleick, Tom Standage and Sir Nigel Shadbolt.

“You made the first live Christmas broadcast in 1957,” he added, “and an event relished by historians took place on 26 March 1976, when you became the first monarch to send an email, during a visit to the Royal Signals and Radar Establishment. “

Then Mr Blatchford invited Her Majesty to join him to “send your first Tweet”.

The Queen removed a glove to send her pioneering tweet from the @BritishMonarchy Twitter account.


The Queen's first Tweet

The Queen’s first Tweet

This marked the first time that a reigning British monarch contributed one of the half billion or so tweets that are sent every day.

The Queen has a long relationship with the Science Museum and first visited in March 1938, as a princess, a few years after it launched a pioneering Children’s Gallery.

Today she explored Information Age: Six Networks That Changed Our World, the first museum gallery dedicated to the history of information technologies, containing more than 800 iconic objects and six state-of-the art interactive displays in story boxes connected by an elevated walkway.

The £16 million project saw collaborations with leading artists and thinkers, including Olivier award-winning video and projection designer Finn Ross, artists Matthew Robins and Rafael Lozano-Hemmer, broadcaster Bonnie Greer and developer of the world wide web, Sir Tim Berners-Lee.

From the dramatic story of the laying of the first transatlantic telegraph cable that connected Europe and North America  to the birth of the modern smartphone, it looks at how today’s  world was forged with six communication networks: the telegraph; the telephone, radio and television broadcasting; satellite communications; computer networks; and mobile communications.

Lead curator Dr Tilly Blyth showed The Queen and The Duke of Edinburgh around the exhibition, from the bright yellow call box from Cameroon to the BBC’s first radio transmitter from 1922 to the monumental 6-metre high aerial tuning inductor from Rugby Radio Station that lies at the heart of the gallery.

This strangely beautiful web of copper and wood was once part of the most powerful radio transmitter in the world and was donated to the Science Museum by BT.

Over 410,000 people follow the Science Museum on Twitter via @sciencemuseum.

We use twitter to share as many fascinating objects (some weird, others wonderful) and stories from our exhibitions and collections as possible.  In the past we have shared science jokes and organised a Q&A with an astronaut.

We’ve even taken our followers inside Charlie Brown, the Apollo 10 Command Module.

Our curators regularly take over the @sciencemuseum account, taking hundreds of thousands of followers on Twitter tours of their favourite objects. In the past, @rooneyvision has shared his story of how we made the modern world, with @ali_boyle selecting her favourite objects from our astronomy collection (you can read the #CosmosTour here).

The @ScienceMuseum account was also at the heart of the Great British Innovation vote which attracted more than 50,000 votes from the public for their favourite innovation.

We love reading tweets from the millions of you who visit each year, sharing stories of visits, getting engaged and even dancing under our rockets.

From astronauts to pop stars, we have had the pleasure of meeting and tweeting many famous faces. Astronaut Gene Cernan, the last man on the moon, joked with us about driving a NASA moon buggy, with Chris Hadfield sharing stories of life on board the International Space Station, and will.i.am joining us for a tour of the museum.

And it was a remarkable day when both Prof Stephen Hawking and Nobel prize-winner Prof Peter Higgs met in the Science Museum for our Collider exhibition opening.

This year a record breaking 450,000 young people visited the Science Museum on educational trips, or benefitted from its outreach programme, more than any other UK museum. Our Learning team (@SM_Learn) helps schools to plan their visits as well as sharing science demos and experiments that wow visitors every day.

Information Age has been made possible through the generous support of the Heritage Lottery Fund, BT (Lead Principal Sponsor), ARM (Principal Sponsor), Bloomberg Philanthropies and Google (Principal Funders).  Major Funders include the Garfield Weston Foundation, the Wolfson Foundation, the Bonita Trust and the Motorola Solutions Foundation. 

Additional support has been provided by Accenture (Connect Circle Sponsor) as well as the Institution of Engineering and Technology (IET), Cambridge Wireless (CW), the David and Claudia Harding Foundation and other individual donors.  The Science Museum would also like to thank the BBC for their assistance.

Revealing The Real Cooke and Wheatstone Telegraph Dial

John Liffen, Curator of Communications, blogs about an important discovery to be displayed for the first time in our new Information Age gallery opening 25 October 2014.

The Science Museum’s new Information Age gallery features over 800 objects spanning 200 years of telecommunications. Many have been on display before, but most are on show for the first time in this gallery. Among these are newly-acquired objects that show the latest developments in communications, while others are drawn from the Museum’s extensive collections.

One object in particular represents what we believe to be a major discovery.

The object in question is a large Cooke and Wheatstone electric telegraph dial, on loan from Kings College London since 1963. The object has never before been on public display because of doubts over its authenticity. However, I am now confident that it dates from 1837, the year that the practical electric telegraph was introduced in Britain.

Cooke and Wheatstone's Five Needle Telegraph © Science Museum

The newly-identified Cooke and Wheatstone Five Needle Telegraph, 1837 © Science Museum/ Science & Society Picture Library

Since 1876, the Museum has displayed a smaller five-needle instrument and has claimed it to be one of the original instruments installed at either Euston or Camden Town in 1837 when Charles Wheatstone and William Cooke demonstrated their electric telegraph system to the directors of the newly-opened London and Birmingham Railway.

I had long been suspicious of this because there were several technical features which just did not ‘add up’. All the history books repeated the Museum’s assertion about its originality and yet there was no real evidence to confirm it. I decided it was time to find out for certain.

The smaller Cooke and Wheatstone telegraph instrument, now believed to date from about 1849 © Science Museum/ Science & Society Picture Library

The smaller Cooke and Wheatstone telegraph instrument, now believed to date from about 1849 © Science Museum/ Science & Society Picture Library

I researched the whole story again, this time using only contemporary records such as Cooke’s letters, other manuscript documents and press reports. After much work, I concluded that the large dial was almost certainly one of the two 1837 originals, whereas the smaller instrument was likely to be one of the working models made for demonstration at a High Court hearing in 1850 when a rival company was disputing Cooke and Wheatstone’s priority in the invention.

The layout of the dial was Wheatstone’s idea. Any of the 20 letters on the dial can be indicated by making the appropriate pair of needles point to it. No knowledge of a code is needed and the dial is big enough for a crowd of people to see it working. Then as now, good salesmanship was needed to put over new technology.

Sheet 1 of the drawings for Cooke and Wheatstone’s 1837 electric telegraph  © Science Museum/ Science and Society Picture Library

Sheet 1 of the drawings for Cooke and Wheatstone’s 1837 electric telegraph © Science Museum/ Science and Society Picture Library

So why is this discovery so important?

The electric telegraph was the first practical use of electricity and from the 1840s onwards it transformed world communications. After a transatlantic telegraph cable was laid in 1866, messages between Europe and North America took only hours to arrive rather than weeks. Moreover, Cooke saw the emerging railway system as a major customer for the new technology. To operate safely, the railways needed to observe a timetable based on a standard time system.

View taken from under the Hampstead Road Bridge  looking towards the station at Euston Square, 1837

View taken from under the Hampstead Road Bridge looking towards the station at Euston Square, 1837 © Science Museum/ Science & Society Picture Library

The electric telegraph enabled Greenwich time to be distributed right across Britain, and within a few years local time, based on the times of sunrise and sunset, had been replaced by standard (Greenwich) time. The telegraph could also help catch criminals. In 1845 a message sent from Slough railway station to Paddington enabled murder suspect John Tawell to be identified, arrested, and in due course, executed.

After many years of doubt, I am now satisfied that one of the key inventions from the beginning of electric telegraphy has been authenticated and rightly takes its place in our new Information Age gallery.

Paralyzed man walks again with the help of cells from his nose

By Roger Highfield, Director of External Affairs at the Science Museum.

Almost a decade ago, at a talk at the Royal College of Physicians in London, I heard Prof Geoff Raisman describe to a packed audience how he was on the verge of treating paralysed spinal cord injury patients with their own stem cells.

Today, marking the culmination of almost half a century of effort, the BBC reports how Prof Raisman’s pioneering therapy has at long last been carried out by surgeons in Poland, enabling a paralysed man to walk again.

Darek Fidyka, aged 40, was paralysed from the chest down after his spinal cord was severed in a  knife attack in 2010 and had not responded to intensive physiotherapy.

Now he is able walk using a frame after cells from his nasal cavity were transplanted into his spinal cord, according to a paper in the journal Cell Transplantation.

Mr Fidyka told the BBC how walking again  – with the support of a frame – was “an incredible feeling”, adding: “When you can’t feel almost half your body, you are helpless, but when it starts coming back it’s like you were born again.”

Prof Geoff Raisman, chair of neural regeneration at University College London, said that for a paralysed person this feat was “more impressive than man walking on the moon”.

When a nerve fibre is severed it attempts to regrow but is unable to do this is due to the disruption of the pathway along which the nerve fibres need to travel. Often that gap is blocked by cells that close off the spinal cord by forming a scar.

The new hope rests on the discovery that there is only one part of the nervous system in which nerve fibres are in a state of continuous growth throughout adult life. These nerves are at the top of the nose and are concerned with the sense of smell.

Prof Raisman spent years studying in animals how to bridge a severed spinal cord using these olfactory ensheathing cells (OECs). Depending on where the spine is severed in laboratory animals these cell transplants result in the ability to reach with a paw or to climb.

In the first of two operations on Darek Fidyka, when he was 38 years old, surgeons in Wroclaw removed one of his olfactory bulbs and grew the component cells in culture.

Two weeks later the team led by Dr Pawel Tabakow, consultant neurosurgeon at Wroclaw Medical University,  transplanted around half a million of these cells above and below his spinal cord along with strips of nerve tissue taken from the patient’s ankle, providing the means for the gap to be closed once again. Being the patient’s own cells, there was no danger of rejection and thus no need for immunosuppressive drugs.

After three months, Mr Fidyka noticed that his left thigh began putting on muscle. Six months later he took steps with the help of parallel bars, leg braces and the support of a physiotherapist. After two years  he can now walk using a frame. He has also recovered a degree of bladder and bowel sensation and sexual function.

Spinal cord injury is classified into five categories on the ‘ASIA Impairment Scale.’  “After OEC transplantation and the building of the nerve bridge, this patient improved from ASIA A to ASIA C,” said Dr Tabakow (“A” indicates a “complete” spinal cord injury where no motor or sensory function is preserved and “C” indicates an “incomplete” spinal cord injury).

“Prior to the transplantation we estimated that without this treatment, our patient’s recovery chances were less than one percent,” he explained. “However, we observed a gradual recovery of both sensory and motor function that began four months after the surgery.”

MRI scans suggest that the 8 mm gap in the cord has closed up following the treatment. However, Prof Raisman stresses that the success with Mr Fidyka will need to be repeated in more patients to show definitively whether it can stimulate spinal cord regeneration.

The research was supported by the Nicholls Spinal Injury Foundation and the UK Stem Cell Foundation.

Click here to learn more about stem cells and discover more about the latest science stories from our Contemporary Science team.

Zaha Hadid on Maths, Architecture and Women in Science

By Roger Highfield, Director of External Affairs.

When Zaha Hadid won the commission to design a new Mathematics gallery at the Science Museum, there was one question that I simply had to ask her: given she studied mathematics at university and the pervasive evidence that science is institutionally sexist, how much of a hurdle faces women today and how much of an inspiration would her appointment prove to be?

Her acknowledgement that, even for her, the gender gap remains an issue, and particularly in Britain, surprised me: “I’ve come across it a lot in my career here and I never felt it anywhere else to be honest,” she remarks. Her comments, made during a recent visit to the Science Museum, are particularly salient on Ada Lovelace Day (14 Oct), an international celebration of the achievements of women in science, technology, engineering and maths.

The Iraqi-British architect was born in 1950 and raised in one of Baghdad’s first Bauhaus-inspired houses. “In Iraq, maths was taught as a way of life,” she recalls. “We used to just do maths to resolve problems continuously, as if we were sketching.”

But when she came to boarding school in Britain in the early 1960s she found that she “was much more advanced in the sciences than many of the kids at the time, not because they were not smart. I think it was badly taught and it’s very important to teach sciences and maths in a way that makes it appealing.”

Before she went to boarding school, aged around 10, Dame Zaha vividly remembers a trip with her parents to the Science Museum. “It was for me at the time extremely fascinating to see instruments and understand about science. And, around the same time, I also went to art museums. I used to come every summer to London when I was in my teens.”

She went on to study mathematics at the American University of Beirut. The explosion of interest in construction and modernity of the 1960s encouraged her to study at the Architectural Association School of Architecture in London. Today, she is one of the most sought-after architects on the planet, the only female recipient of the prestigious Pritzker Architecture Prize, considered the Nobel Prize of the field.

From the Aquatics Centre she designed for the London Olympics to Rome’s curvilinear National Museum of the XXI Century Arts and China’s Guangzhou opera house, her concepts are futuristic and often voluptuous, with powerful, curving forms. Her work, she explains, has its roots in movement that is a century old, citing the work of Russian abstract artist Kazimir Malevich. The dire economic situation in the West in the seventies “fostered in us similar ambitions: we thought to apply radical new ideas to regenerate society.”

One would have thought that her global success as a ‘starchitect’ is a testament to how the gender gap is no longer a hurdle in Britain. However, like her late British-educated father, an economist and industrialist who helped to found the Iraqi National Democratic party, she found that she had to be dogged to succeed in her career. “I took a risk. “People were thinking I was crazy to do what I did even 30 years ago because it was very risky and that no-one’s going to give me a job. They were right.”

In the 1970s Dame Zaha met Peter Rice, an engineer, who encouraged her and she established her own London-based practice. However, she still struggled for recognition. Twenty years ago, the Millennium Commission refused to fund her winning “crystal necklace” design for the Cardiff Bay Opera House. Dame Zaha said at the time that she had been stigmatised on grounds of gender and race.

There is plenty of evidence that it remains a battle for women to pursue science and mathematics with the same ease enjoyed by men. According to the US National Science Foundation, women comprise only 21% of full science professors (just 5% of full engineering professors) even though they earn about half the doctorates in science and engineering in the US. They have to work harder to make the same impact.

One study, published last December by Cassidy Sugimoto of Indiana University Bloomington, and colleagues, evaluated 5,483,841 papers published between 2008–2012 and concluded that “in the most productive countries, all articles with women in dominant author positions receive fewer citations than those with men in the same positions”.

It is a similar picture for the UK and for architecture too. Last year Dame Zaha criticised the “misogyny” among UK architects, arguing that society is not equipped to help women back to work after childbirth. “You know we still suffer,” Dame Zaha tells me. “ it’s not very smooth. There’s been a problem always – the stereotype is that girls can’t do sciences.”

But, of course, they can. Over the years she has taught at many prestigious institutions, from the Harvard Graduate School of Design to the Hochschule für bildende Künste Hamburg and The University of Applied Arts, Vienna. “Some of my best students are women,” she remarks. “I think it’s very important to encourage them.”

She acknowledges that her struggle and resulting success plays an inspirational role. “I do notice now when I go out to give a talk somewhere there are many girls who come to me. They want to be reassured that they actually can break that barrier and also do it with confidence. That’s why education is very important as it gives you confidence to conquer the next step. That confidence allows you to take risks.”

At the launch of the museum’s new Mathematics gallery in September, Dame Zaha was accompanied by museum Director Ian Blatchford, David and Claudia Harding – who made an unprecedented £5 million donation to build the gallery through their foundation – Culture Secretary Sajid Javid and her business partner, architect Patrik Schumacher, who helps Dame Zaha lead her team of 300 people.

Science Museum Curator David Rooney explained how the centrepiece of the forthcoming gallery will be the Handley Page ‘Gugnunc’, a 1929 British experimental aircraft with a 12-metre wingspan that was designed to fly safely at slow speeds from short take-offs.

The aircraft’s aerodynamics proved influential at the very beginnings of civilian air travel. In the same way, the swirling flows of air around the aircraft in flight inspired Dame Zaha’s design and will allow mathematics to take flight in the museum.

Behind the Handley Page in her design lie three minimal surfaces (they enclose the smallest possible area that satisfy some constraints) that are based on the shapes of the vortices in the turbulence created behind the plane in flight. The equation defining these surfaces is governed by six different parameters and, by tweaking them, a menagerie of sensuous shapes emerges on screen in the offices of Zaha Hadid Architects. “Mathematics and geometry has an amazing influence particularly on our work,” she says. “It’s very exciting.”

Some of these surfaces will provide the backdrops to support display cases used throughout the galleries to provide an appropriate setting for a dazzling range of objects that will span 400 years of science and mathematics. It seems only appropriate to point out, on the day we celebrate the ‘first computer programmer‘, that the shapes were generated with Mathematica software.

The Mathematics gallery is the fourth commission this year as part of the redevelopment of the Science Museum. Wilkinson Eyre has been appointed to create £24 million Medical Galleries; London-based Coffey Architects is designing a new £1.8 million library and research centre in the museum’s Wellcome Wolfson Building; and Muf, a collective of artists, architects and urban designers, was selected to design a £4 million interactive gallery in the museum. Around one third of the building will change over the next few years, marking the biggest transformation of the museum since it was established more than a century ago.

Open for Business: The story of contemporary British industry

Curator Ben Russell reflects on the story of contemporary British industry, on show in our Open for Business exhibition. 

Our collections include some of most celebrated icons of manufacturing and engineering in history, including Puffing Billy, Newcomen’s engine and Stephensons’s Rocket. These objects embody the ingenuity, resourcefulness and resolve of the engineers and manufacturers who created them.

Stephenson's 'Rocket' (1829) on display at the Science Museum. Credit: Science Museum

Stephenson’s ‘Rocket’ (1829) on display at the Science Museum. Credit: Science Museum

Fast forward to the present day, and it seems like many people’s perceptions of manufacturing continue to be dominated by heavy industrial images of men in boiler suits bathed in oil, up to their elbows in a machine. Of course, that’s still an integral part of industry, and one not without its attractions. But what we don’t often recognise is just how much contemporary British manufacturing has (literally) smashed these conventions into pieces.

Many people think Britain doesn’t actually make things anymore, but the reality is very different. Making things and selling them around the world remains strategically important for Britain, and its resilience continues to draw many manufacturing companies back to the UK after relocating to the Far East. As well as the mass production of everything from tin can tops to cars, many British companies thrive by carving out their own unique niches, from building yachts to weaving fine textiles. Many companies make a reputation for the excellence of their product: Quality sells.

Princess Yachts. Plymouth. GB. 2013. Open for Business © Chris Steele-Perkins, Magnum Photos

Princess Yachts. Plymouth. GB. 2013. Open for Business © Chris Steele-Perkins, Magnum Photos

Our exhibition Open for Business tells the story of contemporary British manufacturing through the images of nine Magum photographers. They each concentrated on a different region of the UK, visiting one-man businesses and FTSE 100 companies like Airbus and Renishaw, to try and create a snapshot of industry across the UK.

Their subjects can seem surprising, with photographs that include Aardman animators and theatre propmakers, as well as shipbuilding and factory workers. Renowned photographer David Hurn wanted to show the variety of manufacturing in Wales. Rather than just focus on the coal mines more commonly associated with industry in Wales, he chose to photograph Corgi Hosiery, a Welsh company that produces a range of socks designed by Prince Charles.

Renewable Energy. Scotland. GB. 2013. Open for Business © Stuart Franklin, Magnum Photos

Renewable Energy. Scotland. GB. 2013. Open for Business © Stuart Franklin, Magnum Photos

The incredible diversity of British manufacturing challenges the perceptions of what’s needed behind-the-scenes to make things. Roles in contemporary UK industry are vast, varied and can no longer be defined by the image of men in boiler suits.

Of course, it was ever thus: in the Industrial Revolution, Britain’s reputation as workshop of the world was attributed, not to the rise of the machines, but to the excellence of her people. In 1803, a French commentator praised ‘the wonderful practical skills’ of Britain’s ‘adventurers in the useful application of knowledge, and the superiority of her workmen in rapid and masterly execution’. The same could equally be said about making things in Britain today.

See more stunning images in our Open for Business exhibition, which closes 2 November 2014. 

Make Life Worth Living – Nick Hedges’ Photographs for Shelter, 1968-72

In this post Hedy van Erp, co-curator of the new Media Space exhibition Make Life Worth Living, looks at the background of the exhibition and the significance of the photographs on display.

Nick Hedges was commissioned by housing charity Shelter to document the poor conditions suffered by many around 1970. He travelled around the UK for four years and photographed people in slum properties in London, Birmingham, Liverpool, Sheffield, Glasgow and other major cities. A selection of these images – 100 out of the 1000 vintage prints held by the National Media Museum – can now be seen in the Virgin Media Studio at Media Space.

Children playing at 'Weddings', The Gorbals, Glasgow, 1970 © Nick Hedges  National Media Museum, Bradford

Children playing at ‘Weddings’, The Gorbals, Glasgow, 1970 © Nick Hedges National Media Museum, Bradford

Detached from the original Shelter context and combined with many images which have never been seen before, Make Life Worth Living does not just show the misery in housing around 1970, but is in fact a cinematic narrative of Hedges criss-crossing the UK from 1968 to 1972. The selection is reminiscent of Robert Frank‘s groundbreaking book The Americans. Like Frank, Hedges at the time was a true ‘noir’ photographer.

It has been said that Nick Hedges’ work for Shelter is strongly related to the American tradition of social documentary established by photographers like Lewis Hine and Paul Strand. Moreover, an analogy can be found in the work of Walker Evans, when he was hired by the Farm Security Administration to document the poor conditions of the farmers in pre-Second World War America.

“Make Life Worth Living”, terrace of back-to-back houses, Leeds, West Yorkshire, July 1970 © Nick Hedges / National Media Museum, Bradford

“Make Life Worth Living”, terrace of back-to-back houses, Leeds, West Yorkshire, July 1970 © Nick Hedges / National Media Museum, Bradford

Hedges also continued the rich tradition of socially committed photography in Britain. In fact, few photographers have captured better than Hedges what is both so upsetting and captivating in the look of Britain around 1970. Yet this is more than the aesthetics of poverty. Hedges’ Britain is at times a gritty place full of shadows, where you get the feeling things may not end well, but you still can’t stop looking.

Kitchen of slum house, Birmingham Duddleston, August 1970 © Nick Hedges / National Media Museum, Bradford

Kitchen of slum house, Birmingham Duddleston, August 1970 © Nick Hedges / National Media Museum, Bradford

The images taken outside the derelict houses – street scenes, city and rural landscapes – have a casual, almost drive-by feel. But you quickly see how carefully Hedges chose the images he shot over four years. Signs, interiors, children and animals keep cropping up, echoing from image to image. These images possess an energy and a visual harshness that contradict what may at first glance be mistaken for objective photojournalism.

It’s not only permissible, but also rewarding to take pleasure in Hedges’ images; the way light falls on a kitchen floor, the terraced houses running down to a factory, the pile of shoes in the window of a second hand shoe shop, or the vacant stare of a mother holding her baby. When life is hard, which it often is in these photographs, we have to look hard, but when we do, Hedges shows us beauty in many places.

A playground by the shipyards. Govan, Glasgow, August 1970 © Nick Hedges / National Media Museum, Bradford

A playground by the shipyards. Govan, Glasgow, August 1970 © Nick Hedges / National Media Museum, Bradford

Apart from showing beauty, disconnection and decay, Hedges’ poignant work offers us an important part of Europe’s past and culture. 40 years later, his Shelter archive is an incredibly strong body of work with which Hedges created history with his camera, history that happened in the form of scenes that can now become symbolic archetypes embedded in a national consciousness. Nick Hedges shows us life worth seeing – the words ‘worth seeing’ in fact being a gross understatement.

Make Life Worth Living: Nick Hedges’ Photographs for Shelter, 1968-72 runs in the Virgin Media Studio at Media Space until 18 January 2015. Entry to the exhibition is free.

Grand Designs For Information Age

Nick Rolls, Design Project Leader at Universal Design Studio, reflects on the design of the Science Museum’s new Information Age gallery.

Artist's impression of the Information Age gallery. Image credit: Universal Design Studio

Artist’s impression of the Information Age gallery. Image credit: Universal Design Studio

In early 2011, we were commissioned to work on the Science Museum’s new Information Age gallery.

From the outset, we knew this project would create a special challenge. With an impressive range of assets –  200 years of inventions, 800 unique objects and a vast gallery space measuring 2,500m2, this would be a unique gallery within the Science Museum.

One of the biggest challenges we faced was organising the huge empty space into a navigable gallery whilst giving each object and story a platform on which to shine.

We started with the largest and most impressive object of all – the aerial tuning coil from Rugby Radio Station, which we decided to place at the heart of the gallery.

Made from timber and webs of cables, this incredible object looks almost primitive in construction. This ambiguity made it a great tool for us to draw visitors into the centre of the gallery and make them question their preconceptions of modern communications. It is a world away from the common communication devices that spring to mind – mobile phones, micro-chips and digiboxes.

We learnt that the tuning coil was housed underneath a copper shroud – we think to dissipate heat and prevent the timber structure from igniting. This provided us with a material that resonated with the object’s history and a warm, reflective surface for the display. The coil is located where visitors can learn about the transmitter, signal and receiver.

From the centre you can see that the gallery is divided into six networks – each one telling stories from a specific section of communication technology. Placed around the outsides of the gallery, similar to the idea of a town square or plaza, we placed large double height display cases. These display structures are designed to house a vast array of objects.

Floorplan of the Information Age gallery. Image credit: Universal Design Studio

Floorplan of the Information Age gallery. Image credit: Universal Design Studio

These display structures serve several purposes. One function is to hold up the elevated walkway that encircles the gallery. More importantly, they allow visitors to engage with the incredible objects and stories told in each of the six networks. For this reason, they became known as storyboxes. To provide a varied experience, both a producer and a ‘voice’ were assigned to a storybox for each network, creating an installation of their conception.

The sheer quantity of objects on display within the gallery required meticulous planning of the space.

Stories with large numbers of objects fill showcases, which in turn create smaller spaces and routes throughout the gallery. A key concern was to ensure visitors knew where their attention should be focussed, especially in a gallery without a prescribed route.

We crafted a space that used solid forms and open apertures within the gallery, providing clear groups of objects along with vistas from one section to another.

Lastly, we designed a large encircling walkway that loops around the gallery. We introduced this to provide an overview of the space and an alternative perspective of the gallery. We felt it was important for visitors to understand the context of each story within the scheme of the gallery – allowing them to connect objects from one end of the space to the other.

Fundamentally, this is a gallery about incredible objects, people and stories. The format of the gallery plays a supporting role to these awe-inspiring exhibits. We hope visitors will enjoy experiencing the gallery through the space we have designed.

The Information Age gallery will be welcoming visitors from 25 October 2014. For more information visit sciencemuseum.org.uk/informationage.

Life on the Exchange – Stories From The Hello Girls

Sunday 5 October marks the 54th anniversary of the Enfield Exchange switching from manual to automatic exchange. To celebrate, Jen Kavanagh, Audience Engagement Manager, spoke to telephone operators from the 1950s and 1960s who shared their stories for the new Information Age gallery.

Today when we pick up the telephone, the digital automated system makes connecting a call quick and simple. But before this automatic system was introduced, telephone exchange operators had to help us on our way.

Manual Telephone Exchange Enfield. October 1960. Image credit: Science Museum / SSPL

Manual Telephone Exchange Enfield. October 1960. Image credit: Science Museum / SSPL

In the first half of the 20th century, women worked across the country, connecting calls and helping people get in touch with one another. The work required concentration, patience and an excellent manner, but the community created within these exchanges was fun and social once shifts had ended.

Women working on the Exchange at Enfield. Image credit: Science Museum / SSPL

Women working on the Exchange at Enfield. Image credit: Science Museum / SSPL

One of the last manual telephone exchanges was based at Enfield, north London. The Enfield Exchange’s switch from manual to automatic exchange, marked the end of an era in communication history. A section of the Enfield Exchange, donated to the Science Museum by BT, forms a part of the Museum’s collection, and will go on display in the new Information Age gallery.

To bring this amazing piece of history to life, we spoke to women who worked as telephone exchange operators in the 1950s and early 1960s, recording their stories through oral history interviews.

These former ‘hello girls’ gave their insight into how the exchange worked and what the job of an operator involved, but also shared wonderful stories about the friends they made and the social life they experienced once they’d clocked off.

A switchboard from the Enfield Exchange, which will go on display in the Science Musuem's new Information Age gallery. Image credit: Science Museum

A switchboard from the Enfield Exchange, donated to the Science Museum by BT, which will go on display in the new Information Age gallery. Image credit: Science Museum

One of these former operators, Jean Singleton, shared her thoughts on what made a good telephone operator, even if she didnít feel she was one!

‘How do I know? [Laughs] I wasn’t a good telephone operator, I was a naughty telephone operator! Well, first of all, you had to have a nice speaking voice, you couldn’t go there if you were a Cockney, speaking in a Cockney way, or a Northern way, you had to speak the Queen’s English, or King’s English as it was then. I suppose I had a decent enough voice. You had to be polite, and the customer sort of was always right, more or less, you know, you didn’t swear back at somebody if they swore at you, you weren’t allowed to do that sort of thing. If you found you were in trouble with a person on the telephone, you just passed them over to your supervisor, and they would deal with it.’

A close up view of the Enfield switchboard. Image credit: Science Museum.

A close up view of the Enfield switchboard. Image credit: Science Museum.

Another former operator, Rose Young, talked about some of the kit that was used whilst working on the exchange.

‘The first headsets were very heavy, you’d have a mouthpiece that came up in front of you on a plastic piece that had a tape on that you hung round your neck. And then the headpiece was like a metal band with a very heavy earpiece, you had one ear free so that you could hear what was going on around you and one that you covered, that covered your ear, but they were very heavy.’

Visitors to Information Age will have the opportunity to hear more from these incredible women through an interactive audio experience which will sit alongside the original section of the Enfield Exchange. We’ll just have to make sure we edit the cheeky bits!

Discover more about these stories when the Information Age gallery opens on Saturday 25 October.

How Mathematics Inspired the Writers of The Simpsons and Futurama

Pete Dickinson, Head of Comms, reflects on a global premiere and the mathematics hidden within the Simpsons and Futurama.

Leading lights of the Simpsons and Futurama, Al Jean and David X. Cohen, served up a sell-out event at the Science Museum that danced effortlessly like a Simpsons episode between scintillating story-telling, one-liners and hard-core mathematics.

QI creator John Lloyd, CEO of Innovate UK Iain Gray, and mathematics populariser Alex Bellos were among those lured to the museum for an evening of maths and mirth, but it was 12-year-old Toby Hawkins whose question precipitated the eveningís global premiere.

Toby wondered whether we could hope for a Simpsons and Futurama crossover episode if anyone should prove that P does not equal NP and thus solve a major unresolved problem in computer science. In response we were treated to the first ever airing of part of a ‘Simpsorama’ crossover show that will see Bender travelling back in time in an attempt to kill Bart so worldwide disaster can be averted.

Al Jean and David X. Cohen discussing maths and The Simpsons at the Science Museum. Credit: Science Museum

Al Jean and David X. Cohen discussing maths and The Simpsons at the Science Museum. Credit: Science Museum

The evening was expertly compered by Simon Singh, author of The Simpsons and their Mathematical Secrets. He invited Al Jean and David X. Cohen to explain how and why they have regularly embellished episodes of both series with references to degree-level maths such as Fermatís Last Theorem or the Taxicab number.

Al Jean, who worked on the first series and is now executive producer of The Simpsons, and studied maths at Harvard, credited serendipity; many of the writers had scientific backgrounds. He went on to suggest that mathematics and comedy writing demand the same kind of thinking and a similar, sometimes obsessive, quest for the perfect solution.

We heard how, in the early 90s, the writers faxed a mathematician working at NASA to ensure the accuracy of a line by store owner Apu Nahasapeemapetilon when he boasts ‘I can recite pi to forty thousand places. The last digit is 1.’

David X Cohen, creator of Futurama who happens to have a computer science degree from UC Berkeley, hinted at a more serious purpose. Lamenting the way entertainment goes out of its way to make maths seem boring, he said ‘part of what I think about when we do Futurama is let’s make it fun, let’s not make it scary’.

Earlier, Science Museum Deputy Director Jean Franczyk had provided the context for the evening with a reminder of the Science Museumís ambitious plans for a new mathematics gallery, made possible by the generosity of the David and Claudia Harding Foundation. By combining the curation of David Rooney, the creativity of Zaha Hadid Architects and the museum’s beautiful maths collection, Jean predicted a gallery that would delight all, including the ‘intrepid and maths-loving Lisa Simpson’.

The event has inspired a wide range of media interest, on the importance of Lisa as a mathematical role model, the links between mathematics and comedy, along with mentions on Radio 4′s Loose Ends and Radio 1′s Nick Grimshaw Show.

All clips from The Simpsons and Futurama were kindly provided by Twentieth Century Fox Television.

Global Telephone Calls For All

David Hay, Head of Heritage & Archives at BT, reflects on the story of the first transatlantic telephone cable, TAT1, which opened 58 years ago today (25 September). The story will be covered in the Science Museum’s new Information Age gallery, which opens on 25 October.

Programme for the inauguration of the cable, 25 Sep 1956. Image credit: Courtesy of BT Heritage & Archives

Programme for the inauguration of the cable, 25 Sep 1956. Image credit: Courtesy of BT Heritage & Archives

When the first transatlantic telephone cable was launched on 25 September 1956, it was hailed as the start of the modern era of global communication. It was designed to link both the United States and Canada to the UK, with facilities for some circuits to be leased to other West European countries too.

The cable  provided 30 telephone circuits to the US and six to Canada. Most were for communication with the UK, the rest were connected through London to give direct access to Europe.

Transatlantic telephone cable operations, Oban, Scotland, 1855. Image credit: Courtesy of BT Heritage & Archives

Transatlantic telephone cable operations, Oban, Scotland, 1855. Image credit: Courtesy of BT Heritage & Archives

Undertaken by BT’s predecessor, the Post Office Engineering Department, along with the American Telegraph and Telephone Company, Bell Telephone Laboratories and the Canadian Overseas Telecommunications Corporation, the £12.5 million project took three years to complete. During this time the system was planned, manufactured and installed, which required developing new techniques for placing cable in deep waters.

Men pulling first segment ashore at Clarenville, Newfoundland,  Canada, 1955. Image credit: Courtesy of BT Heritage & Archives

Men pulling first segment ashore at Clarenville, Newfoundland, Canada, 1955. Image credit: Courtesy of BT Heritage & Archives

Telegraph links between the UK and the USA had been in existence from the middle of the previous century, but 1927 saw the first commercial radiotelephone service between the two countries. Initially 2,000 calls per year were made across the Atlantic, but the cost was prohibitive – in 1928 the basic rate for calls to New York was £9 for just three minutes.

It was only with the development of new equipment, such as coaxial cables with polyethylene insulation, carrier frequency equipment and broadband submerged repeaters, that transatlantic telephony by cable could be realised. These new technologies were developed just before and during World War Two. One key Post Office input was the development of subsea repeaters which were robust and reliable enough for areas around the coast and mainland Europe.

Cable operations at Clarenville, Newfoundland,  preparing to bring cable ashore, 1955. Image credit: Courtesy of BT Heritage & Archives

Cable operations at Clarenville, Newfoundland, preparing to bring cable ashore, 1955. Image credit: Courtesy of BT Heritage & Archives

Apart from the short shore ends, the whole of the transatlantic telephone cable was laid by the Post Office cable ship Monarch. It was the only such ship that was capable of carrying the 1,500 nautical miles of cable which had to be laid in one piece across the deepest part of the Atlantic, between Oban in Scotland and Clarenville, Newfoundland. The cable then crossed over the the Cabot Strait to Sydney Mines, Nova Scotia.

Cable route map from Oban to Clarenville and topographic diagram of the ocean floor. Image credit: Courtesy of BT Heritage & Archives

Cable route map from Oban to Clarenville and topographic diagram of the ocean floor. Image credit: Courtesy of BT Heritage & Archives

At the inaugural ceremony at  Lancaster House in London on 25 September 1956, the service was opened by the Postmaster General, who spoke to the Chairman of AT&T calling from New York, and to the Canadian Minister of Transport.

During its first year of service, TAT1 carried twice as many calls as the radio circuits had done in a year – about 220,000 calls between Britain and the United States, and 75,000 between Britain and Canada – generating £2 million to be shared between the three countries.

In 1956, the first transatlantic telephone cable was regarded as a major technological achievement, not least as a base for future research and improvements. It laid the path for further developments such as sophisticated digital fibre optic transatlantic cables, which can pass tens of thousands of calls simultaneously.

Sectioned submerged repeater for TAT-1 the first trans-Atlantic telephone cable, designed at the Post Office Research Station at Dollis Hill, made by Standard Telephones and Cables Limited, Woolwich, London, England, 1956. Image credit: Science Museum

Sectioned submerged repeater for TAT-1 the first trans-Atlantic telephone cable. Credit: Science Museum

BT is excited to be Lead Principal Sponsor of the new Science Museum’s Information Age gallery, where the story of TAT1 and transatlantic communications is told. Our purpose as a company is to use the power of communications to make a better world. We have been involved in every significant development in telecommunications since the birth of the technology in 1837 with the invention of the electric telegraph in the UK

It was important for us to be able to support Information Age in telling the stories of how communications technology has changed the world for the better. And we are delighted to have donated so many of the objects on display in the gallery from our own heritage collection.

Information Age opens to the public at the Science Museum in London on 25 October 2014. For more details visit sciencemuseum.org.uk/informationage.