Monthly Archives: February 2014

Beyond Earth

Nicola Burghall is a Content Developer and part of the Contemporary Science team at the Science Museum. Here she blogs about National Astronomy Week and the free upcoming festival Beyond Earth.

In the past few days there has been some awesome space news – from the breathtaking photos of the Aurora Borealis over the UK, to the hundreds of new planets found by the Kepler telescope!

I was so excited to get my first telescope as a child. Growing up in Wales it was often too wet and cloudy to use it, but I will never forget the first time I looked at the moon – I was hooked.

I still have my (slightly battered) telescope ready for those clear winter nights. This month it’s National Astronomy Week (1-8 March) and I hope it will inspire a lot more people to look up at the sky!

The star of the show (although not literally) is Jupiter. The giant planet will be at a high point in UK skies so, if you’ve got the kit, you might be able to take some really good photos. Ever wondered what Jupiter sounds like? I hadn’t even thought about it, but apparently it goes something like this.

Jupiter's Violent Storms. Image taken by Voyager 2 in 1979.

Jupiter’s Violent Storms. Image taken by Voyager 2 in 1979. Credit: NASA

Working at the Science Museum I get to be around an amazing array of astronomical objects – from an 18th Century telescope used by the first professional female astronomer Caroline Herschel, to sensors from the Cassini-Huygens mission to Saturn (currently sending back some spectacular images).

In the Exploring Space gallery you can also find Helen Sharman’s space suit – the first Briton to go into space in 1991. Helen was measured in 54 different places to ensure the perfect fit of her protective suit (not exactly something you can grab off the peg!).

SOKOL space suit worn by Helen Sharman in 1991, manufactured by 'Zvezda'.

SOKOL space suit worn by Helen Sharman in 1991, manufactured by ‘Zvezda’. Credit: SSPL

We’ll also be tweeting about many of our space objects on Tuesday at 1pm. Follow #CosmosTour to discover more about our curator’s favourite objects.

Beyond Earth

Right now I’m busy (and excited to be) organising a FREE festival called Beyond Earth, which will take place at the Science Museum from the 7th-9th March 2014.

You’ll be able to meet scientists and engineers who develop and use the latest technology to explore the vast expanse of space. Find out how their research is helping us to understand the universe we live in, what they have discovered and how you can be a part of it. 

Come along to a talk, watch a demonstration or drop in to our Space Station activities and get crafty making a Sputnik Satellite or have a go launching your own Vostok Rocket. Check out the full festival programme here.

I hope to see you there!

Information Age: Testing, testing, 1 2 3

Jack Gelsthorpe and Lauren Souter are both Audience Researchers working on the new Information Age gallery. Here they discuss some of the work they do in prototyping digital media for the exhibition.

In September 2014 an exciting new gallery, Information Age, which celebrates the history of information and communication technologies, is due to open at the Science Museum.

The gallery will include some truly fascinating objects such as the 2LO transmitter, part of the Enfield telephone Exchange and the impressive Rugby Tuning Coil. As well as these large scale objects, the exhibition will house smaller objects such as a Baudot Keyboard, a Crystal Radio Set, and a Morse Tapper.

Information Age will also contain a host of digital technology and interactive displays where visitors will be able to explore the stories behind the objects and the themes of the exhibition in more detail.

This is where we come in.

As Audience Researchers, it is our job to make sure that visitors can use and engage with the digital displays in this gallery whilst also ensuring that they don’t draw attention away from the objects and the stories they tell.

We do this by testing prototypes of the interactive exhibits, games, web resources and apps with visitors both in the museum and through focus groups. There are three stages in the prototyping process. We begin by showing people a ‘mock up’ of a resource so that we can get feedback on our initial ideas. This can be very basic, for example we have been testing for Information Age with storyboards on paper, handmade models (which have sometimes fallen apart during the testing process!) and computers.

A prototype of an interactive model that represents the Baudot Keyboard

A prototype of an interactive model that represents the Baudot Keyboard

We invite visitors to try these prototypes while we observe and make notes and then we interview them afterwards. This helps us to understand what people think about our ideas, whether people find the resources usable and whether the stories we want to tell are being conveyed effectively. We then discuss our findings with the Exhibition team who are then able to further develop their ideas. The resources are tested a second and third time using the same process to ensure that the final experience is interesting, fun and engaging.

As well as testing these resources in a special prototyping room we also test some of the experiences in the museum galleries to see how visitors react to them in a more realistic setting.

Recently we have been prototyping electro-mechanical interactive models of some of the smaller objects that will be on display in Information Age. These exhibits intend to give visitors an insight into what it would have been like to use these objects whilst explaining the scientific processes behind how they work.

A prototype of an interactive model that represents the Double Needle Telegraph.

A prototype of an interactive model that represents the Double Needle Telegraph.

We will be testing different digital experiences until September, so you may see us in the prototyping room or the galleries. If you see us feel free to say hello and ask us any questions.

Experience these interactive models for yourself in the new Information Age gallery, opening Autumn 2014.

Peter Higgs: The Life Scientific

Quantum physicist and broadcaster Jim Al-Khalili blogs on interviewing Peter Higgs for the new series of The Life Scientific on BBC Radio 4. Discover more about the LHC, particle physics and the search for the Higgs boson in our Collider exhibition

I love name dropping about some of the science superstars I’ve interviewed on The Life Scientific. ”Richard Dawkins was quite charming on the programme, you know”, or “James Lovelock is as sharp as ever”, and so on. So imagine my excitement when I heard I would be interviewing the ultimate science celebrity Peter Higgs.

When I discovered we had secured him for the first programme in the new 2014 series, I knew I had to get something more out of him than to simply regurgitate the popular account of the man as shy, modest and unassuming, and still awkward about having a fundamental particle named after him; or how the Nobel committee were unable to get hold of him on the day of the announcement because he had obliviously wandered off to have lunch with friends.

This was an opportunity for two theoretical physicists – OK, one who has a Nobel Prize to his name and one who doesn’t, but let’s not split hairs here – to chat about the thrill of discovery and to peek into the workings of nature, whilst the outside world listened in.

A couple of Bosons: Peter Higgs with Jim Al-Khalili

A couple of Bosons: Peter Higgs with Jim Al-Khalili. Credit: Charlie Chan

You can listen to the programme from 18 February, but here are a few extracts to whet your appetite.

Can you explain the Higgs mechanism in 30 seconds?

At some point in the programme, inevitably, I had to ask Peter to explain the Higgs mechanism and Higgs field (both more fundamental concepts than the Higgs boson). He gave a beautifully articulate and clear explanation, but I then thought I should ask him to give the ‘idiot’s guide to the Higgs’, just to cover all bases. Here’s how that went:

‘The Boson that Bears my Name’

Working alone in Edinburgh in the sixties, Peter Higgs was considered ‘a bit of a crank’. “No-one wanted to work with me”, he says. In 1964, he predicted the possible existence of a new kind of boson, but at the time there was little interest in this now much-celebrated insight. And in the years that followed, Peter Higgs himself failed to realise the full significance of his theory, which would later transform particle physics.

In July 2012, scientists at the Large Hadron Collider at CERN confirmed that the Higgs boson had indeed been found and Peter Higgs shot to fame. This ephemeral speck of elusive energy is now the subject of car adverts, countless jokes, museum exhibitions and even a song by Nick Cave called the Higgs Boson Blues. But Higgs has always called it the scalar boson or, jokingly, ‘the boson that bears my name’ and remains genuinely embarrassed that it is named after him alone.

In fact, three different research groups, working independently, published very similar papers in 1964 describing what’s now known as the Higgs mechanism. And Higgs told me he’s surprised that another British physicist, Tom Kibble from Imperial College, London didn’t share the 2013 Nobel Prize for Physics, along with him and Belgian physicist, Francois Englert.

On fame
When the 2013 Nobel Prize winners were announced, Peter was famously elusive (much to the frustration of the world’s media). Most people romanticised that he was blissfully unaware of all the fuss or just not that interested. These days, he’s constantly being stopped in the street and asked for autographs, so I asked him whether he enjoyed being famous:

Physics post-Higgs
With the discovery of the Higgs finally ticked off our to-do list, attention is turning to the next challenge: to find a new family of particles predicted by our current front-runner theory, called supersymmetry. Higgs would ‘like this theory to be right’ because it is the only way theorists have at the moment of incorporating the force of gravity into the grand scheme of things.

But what if the Large Hadron Collider doesn’t reveal any new particles? Will we have to build an even bigger machine that smashes subatomic particles together with ever-greater energy? In fact, Peter Higgs believes that the next big breakthrough may well come from a different direction altogether, for example by studying the behaviour of neutrinos, the elusive particles believed the be the most common in the Universe, which, as Higgs admits, “is not the sort of thing the Large Hadron Collider is good for”.

When it started up in 2008, physicists would not have dreamt of asking for anything bigger than the Large Hadron Colider. But today one hears serious talk of designing a machine that might one day succeed it. One candidate is the somewhat unimaginatively named Very Large Hadron Collider. Such a machine would dwarf the Large Hadron Collider. It would collide protons at seven times higher energy than the maximum the Large Hadron Collider is able to reach. And it would require a tunnel 100 km in circumference. Of course this is not the only proposal on the table and there are plenty of other ideas floating about – none of which come cheap, naturally.

There are certainly plenty more deep mysteries to solve, from the nature of dark matter and dark energy to where all the antimatter has gone, and we will undoubtedly find the answers (oh, the delicious arrogance of science). Let’s just hope we don’t have to wait as long as Peter Higgs did.

Keen to discover more? You can listen to Peter Higgs on BBC Radio 4′s The Life Scientific (first broadcast 9am on 18 February) and visit the Collider exhibition at the Science Museum until 5 May 2014. 

Anticipating Antimatter

Collider exhibition curator Dr. Harry Cliff blogs on Dirac’s discoveries and anticipating antimatter.

It was 86 years ago on Saturday that one of the most important scientific papers of the 20th century appeared in the Proceedings of the Royal Society. Written by the young British physicist Paul Dirac, it was simply titled A Quantum Theory of the Electron, and was nothing short of a theoretical triumph.

Paul Dirac

Paul Dirac. Image: Nobel Foundation

In it, Dirac had set out to solve a problem that was occupying some of the greatest minds in physics. To date, quantum mechanics had failed to explain the fine detail of atomic spectra – the discrete wavelengths of light emitted and absorbed as electrons hop between different energy levels in atoms. In particular the electron had to be given a strange property known as “spin” to explain the number of different energy levels.

Spin itself was a rather mysterious quantity. It suggested that that the electron behaved as if it was rotating rapidly on its axis, but a quick calculation showed that this couldn’t be true – the electron would have to be spinning faster than the cosmic speed limit, the speed of light, something forbidden by Einstein’s theory. It also had to be bolted on to quantum mechanics like a clumsy afterthought, without any explanation for its origin.

Dirac, for whom mathematical beauty in the laws of physics was almost a religious cause, was deeply dissatisfied with this awkward situation. He believed that the problem lay in combining the two pillars of modern physics, quantum mechanics (the theory of the very small) and relativity (the theory of the very fast).

He was after an equation describing the behaviour of electron that was consistent with both theories, and also explained the known properties of the electron. Rather surprisingly perhaps, the approach he took was to guess.

An educated guess mind, based on some properties he knew the correct equation must possess and also on his aesthetic desire for simplicity and beauty. Working methodically, he tried equation after equation, discarding them one by one until in late November 1927 he came upon a solution.

Dirac's equation

Dirac’s equation

The equation was perfect. Not only did it accurately reproduce the known energy levels of the hydrogen atom, the property of spin naturally appeared in the equation, without the need to be stuck on by hand afterwards. Spin itself now seemed to be an inevitable consequence of combining relativity and quantum mechanics.

St. John’s College, Cambridge, where Dirac discovered his famous equation.

St. John’s College, Cambridge, where Dirac discovered his famous equation. Image: Andrew Dunn

Dirac, though famously reserved, must have been jumping for joy (though perhaps only in his head). He had pulled off a coup so impressive that his German competitors, Jordan and Heisenberg were left stunned and deflated.

As news spread of Dirac’s success, the man himself was growing increasingly nervous about an odd feature of his equation, one that he had brushed under the carpet in his Royal Society paper.

The equation itself had four solutions, and each solution represented a state that the electron could be in. Two of these corresponded to the garden-variety electron with negative electric charge, but the other two described an electron with positive electric charge and negative energy.

This made no sense whatsoever. No one had ever seen a positively charged electron, and worse still, if these negative energy states existed then ordinary electrons should be able to fall into them, causing an electron to spontaneously switch its charge from negative to positive.

For all the success of the Dirac equation, these negative energy electrons could well have spelt its doom, and no-one was more acutely aware of this than Dirac himself. In fact, this “problem” turned out to be Dirac’s greatest contribution to physics.

It would take Dirac more than three years to understand the true meaning of this extra set of solutions. He had first thought that these negative energy, positively charged electrons might in fact be protons – the positively charged particles inside the atomic nucleus – but he soon realised that this would imply that protons should have the same mass as electrons, when in fact they are roughly 2000 times heavier.

What Dirac eventually reasoned was that these odd solutions actually represented a completely new type of particle, a sort of mirror image of the electron that he dubbed the “anti-electron”. Anti-electrons would look completely identical to ordinary electrons, but positively charged. He also reasoned that other particles like protons should also have anti-versions, and that when a particle met its anti-particle they would annihilate each other.

This must have seemed far-fetched at the time; after all, no one had ever seen an anti-particle. But Dirac was convinced by the beauty of his equation, and in one of the most stunning episodes in modern physics, was proven right just a year later, as Carl Anderson spotted an anti-electron in cosmic ray experiments.

It’s hard to overstate what Dirac had achieved. Through the power of sheer thought, he had predicted the existence of a completely new type of stuff, a stuff never before imagined by scientists. This stuff, what we now call antimatter, is just as real as the stuff you and I are made from, but for some reason doesn’t exist in large quantities in our Universe. This is in fact one of the greatest unsolved mysteries in physics, and one that physicists at the Large Hadron Collider are trying to solve.

Find out more about antimatter by watching this short video or by visiting the Collider exhibition before the 5th May 2014.

Making a Splash!

Katie Burke, who manages the Interactive galleries and Explainer team, talks about the development of the new Splash! app.

One of the things I love about my job within the Learning department is the variety of things I get to work on. When we were approached to help with the development of a new app aimed at our pre-school audience, I was really excited. I’m not particularly techy and I don’t know my RAM from my ROM but that didn’t matter – my role in the project was to make sure the app fitted in with the educational ethos of our children’s interactive galleries in the Museum.

The app was made in partnership with a digital agency called GR/DD. We knew we wanted the app to appeal to our pre-school audience so we looked to our most popular exhibits for this age group for inspiration. The water area in our Garden gallery is a firm favourite of our younger visitors and so it made sense to start there.

Garden water area

The water exhibit in the Garden gallery

GR/DD came up with an idea for an app in which children could experiment with floating, sinking and mixing colours within a bath tub environment. We all loved the idea. For me, bath time as a child holds some really happy memories so I really hoped we could recreate that playful atmosphere with the app.

MotionReactiveWater

Tiliting the screen causes the water to move

Choosing which objects to use in the app was a tricky process! They had to be instantly recognisable to children so that they could make the link between the object and how it behaves when it is put into water. During the development process I’d often show my team of Explainers the draft plans to see if they had any ideas or feedback based on their experience of working within the Garden gallery and it was really useful to get their input.

Early on in the process we all agreed that it was important to include a Parents’ Zone within the app. We wanted to provide some information for parents about how they could use the app to encourage the development of key scientific skills. In our interactive galleries we encourage learning through play and open questioning. For that reason, the Parents’ Zone includes hints and tips about open questions that parents can ask their children whilst they play the app or later on during real bath time.

PARENTS ZONE

Parents’ Zone – tips on how parents could use the app to encourage the development of key scientific skills

After months of development we are all so pleased with the final Splash! app. I love how the water on screen moves and flows as the device is tilted and turned, and the sounds that the objects make when they drop into the water. I think the app perfectly captures the fun atmosphere I remember as a child.

It’s aimed at pre-school children but in my experience the adults enjoy playing just as much as the children. In fact, we should probably add a footnote onto the app description which says “for big kids too!”

If this post has whet your appetite to play on Splash! make sure you run the hot tap to the top of the bath to see what happens – it’s my favourite bit!

Discover more about Splash! (priced at 99p) and our other apps here.