Monthly Archives: April 2014

A young visitor reviews The Energy Show

We’re getting great feedback from audiences attending The Energy Show, which is currently on tour around England and Wales.

We’ve had one fantastic review in particular from seven year old Anna Sherriff that we’d love to share with you. Anna writes:

The Energy Show was fun and exciting with lots of humour and giving a lot of fact as well. Personally I think there could be no improvement at all!

The show was about two scientists doing lots of fun experiments, with i-nstein helping them and explaining some difficult words to the audience. The best bit was the scientists setting fire to the hydrogen and oxygen balloons which went off with loud bangs.

I would recommend The Energy Show because it’s funny, does really cool stuff, and all the people who went with me had a brilliant time too!

Review by Anna Sherriff, aged 7

 

Annabella, Phil and Bernard make science fun for families in The Energy Show. Photo: Benjamin Ealovega

Annabella, Phil and Bernard make science fun for families in The Energy Show. Photo: Benjamin Ealovega

If you’ve seen The Energy Show too and would like to offer feedback please email marketing@sciencemuseum.ac.uk or write to Marketing, Science Museum, Exhibition Road, South Kensington, SW7 2DD. The Energy Show is on tour throughout England and Wales over the next few months and returns to the Science Museum from 22 July – 3 August. Find dates and locations here.

In search of perfect sound – introducing Britain’s largest horn loudspeaker

Aleks Kolkowski, former sound artist-in-residence, remembers his first encounter with the Museum’s exponential horn.

 A long black metal tube, slightly tapered and almost 9-foot-long lay on a row of filing cabinets at Blythe House, the Science Museum’s storage facility. The object was pointed out by John Liffen, the Museum’s Curator of Communications, who guided me during a research visit of the collections in 2008. It was all that remained of a mighty horn loudspeaker that was demonstrated in the Museum during the 1930s, John explained. A demolition accident had almost totally destroyed it in 1949.

John Liffen holding the only surviving section of the Science Museum’s exponential horn. Credit: Science Museum

John Liffen holding the only surviving section of the Science Museum’s exponential horn. Credit: Science Museum

Now the tube assumed a more fascinating form, like a fossil or a dinosaur bone as we delved into audio archeology. The story of the horn, researched in great detail by John, sparked an interest in me. Four years later in 2012, on being appointed as the Museum’s first-ever sound artist-in residence, I was given a wonderful opportunity to initiate its reconstruction.

The exponential horn loudspeaker was designed in 1929 by the Museum’s curator of  ‘Electrical Communication’ R. P. G. Denman who also personally built a radio receiver to run in tandem with it. The purpose of this new sound system was to provide the public with demonstrations of the highest quality broadcast sound that was obtainable at the time. Denman saw it as setting a benchmark for audio quality, his aim was, in his words “to provide a standard by which commercial apparatus could be judged”.

The horn measured 27 feet (8.23m) in length with a cross section that curved exponentially from 1 1/16 inches (27mm) to a massive 7-foot-1-inch square (2.16m sq.) at the horn mouth. The science and theory of how horns propagate sound had only begun to emerge in the mid-1920s. It was found that a horn with an exponential shape was the most effective means of converting the sound energy from high pressure, low velocity vibrations produced at the narrow end of the horn, into low pressure, high velocity vibrations at its mouth, then radiated into the outside air. However, in order to reproduce the lowest sounding frequencies, this type of horn has to be very long with a correspondingly large opening.

An early photograph of the horn prior to its installation at the Science Museum. Published in Amateur Wireless, October 19, 1929. Credit: British Library

An early photograph of the horn prior to its installation at the Science Museum. Published in Amateur Wireless, October 19, 1929. Credit: British Library

Denman, an expert on loudspeakers, specially designed the horn in order to reproduce frequencies as low as 32Hz and up to 6kHz. This was achieved by loading it to one of the latest moving-coil driver units from the Western Electric Company (U.S.A.) namely the WE 555W, widely used in cinema sound systems of the time and now considered to be one of the greatest loudspeaker drivers ever made.

The Museum’s Western Electric 555W Compression Driver used with the Exponential Horn Loudspeaker from 1929 – 1939. Credit: Science Museum

The Museum’s Western Electric 555W Compression Driver used with the Exponential Horn Loudspeaker from 1929 – 1939. Credit: Science Museum

From 1930 until the outbreak of WWII in 1939, the apparatus was demonstrated daily in the Museum’s Radio Communication gallery. The giant horn mouth appeared through the wall above the entrance while the rest of it hung conspicuously in the adjacent Agricultural Implements gallery. It was built into the Museum’s infrastructure and may be described as being its very first sound installation.

Concerts broadcast on the BBC’s London Regional programmes provided the content for the demonstrations. Critical reactions were positive and for audiences at the time, accustomed to limited bandwidth, interference and distortion, the sound must have truly been a revelation. The Museum’s Radio gallery became a popular lunchtime destination, where sandwiches were cheerfully munched while listening to the classics or Wurlitzer cinema organ music, the audio reproduced in glorious full-range. It left an indelible impression on those who heard it, including John Liffen’s own uncle. Writing in the Audio Engineering Society Journal of April 1975, the audio experts Percy and Geoffrey L. Wilson opined that “no superior loudspeaker has to date been demonstrated in Britain”.

The horn’s mouth over the entrance to the Radio Communication gallery is shown by a museum attendant standing on a showcase! From Popular Wireless, October, 1930. Credit: British Library

The horn’s mouth over the entrance to the Radio Communication gallery is shown by a museum attendant standing on a showcase! From Popular Wireless, October, 1930. Credit: British Library

Fast-forward to 2014 and we have an opportunity to hear the horn again.

This is thanks in no small part to the magnificent efforts of the Museum’s Workshops who undertook the reconstruction project with gusto. The missing 18-feet of the horn was rebuilt over an intense 8-month period following Denman’s original specification, although fibre-glass was used in place of the original lead and tin alloy. Led by the Workshops manager Steve Long, the team has succeeded in recreating the single largest loudspeaker in Britain.

The newly reconstructed horn being tested by the author at Blythe House in August 2013. Credit: Science Museum

The newly reconstructed horn being tested by the author at Blythe House in August 2013. Credit: Science Museum

The programme for the upcoming installation is a mixture of past and present, allowing us to listen to the horn in old and new ways. Archive material from the BBC will be heard alongside recent recordings made within the Science Museum. Resonance 104.4FM will be resident in the space, broadcasting live from the Museum, while lunchtime concerts via BBC Radio 3 will mirror the original demonstrations of the 1930s. A series of events, including live music, poetry and performance will also showcase new works for the horn created by a variety of artists, writers and radio programme-makers.

The title, “In Search of Perfect Sound”, refers to Roderick Denman’s quest for audio nirvana. Our modern ears may have become accustomed to high fidelity audio and surround sound, but the exponential horn, with its extraordinary sound presence and a distinct three-dimensional effect, still holds an immersive power of its own.

I’m very proud to have played a part in giving the Denman horn a new lease of life and to have witnessed its exponential metamorphosis, from that modest-looking metal tube, cocooned above all those filing cabinets.

The Exponential Horn: In Search of Perfect Sound opens at the Media Space Studio on 20th May. An afternoon of talks and presentations about the horn and the history of radio in Britain will be held on 12th July. Speakers include John Liffen, Aleks Kolkowski, Dan Wilson and Seán Street.

Aleks Kolkowski is a sound artist, violinist and composer with a special interest in early sound recording and reproduction technology.

Wonderful Things: VCS3 Synthesiser

Stella Williams from our Learning Support Team writes about one of her favourite Science Museum objects

The VCS3 was more or less the first portable commercially available synthesizer, unlike previous machines which were housed in large cabinets and were known to take up entire rooms. It was created in 1969 by EMS (Electronic Music Studios), a company founded by Peter Zinovieff. The team at EMS used a combination of computer programming knowledge, advanced engineering and musical ambition to create a brand new instrument for all to use. The electronics were largely designed by David Cockrell and the machine’s distinctive visual appearance was the work of electronic composer Tristram Cary.

VCS3 synthesiser by EMS

VCS3 synthesiser by EMS
Credit: Science Museum/SSPL

The VCS3 was notoriously difficult to program but, a year before the appearance of the Minimoog and ARP2600, it brought synthesis within the reach of the public. It sold for £330 and became very popular in a short space of time. By the mid ’70s, the VCS3 (and its little brother, the suitcase-bound model AKS) had become something of a classic and was used by many famous bands like Pink Floyd, Yes, The Who and Roxy Music.

This unique instrument allowed musicians to experiment with a range of new sounds never before available to them. Along with other early synthesisers it came to shape ‘the sound of the future’ in the ‘60s and ‘70s, and with further developments came the drum machines of the ‘80s setting the foundation for electronic dance music. Much of the music we take for granted today would not be possible without the pioneering work of groups like EMS and as long as there are developments in technology, there will always be people applying these innovations to music. Inventor Steve Mann has developed many interesting instruments such as the hydraulophone which uses pressurised water to make sounds, while artist and scientist Ariel Garten uses an electroencephalophone to turn brainwaves into music.

What sort of instrument do you think will make the sound of our future?

The VCS3 Synthesiser can be found in the Oramics to Electronica exhibition, on the second floor of the Science Museum.

Particle Fever breaks out at the Science Museum

By Pete Dickinson, Head of Comms at the Science Museum.

What better way to round off events linked to our Collider exhibition about the world’s greatest experiment than with a special screening of Particle Fever, a documentary exploring the same extraordinary story of the Large Hadron Collider at CERN?

Critics, such as the New York Times, have given the film rave reviews and there was a palpable buzz when Director Mark Levinson, was joined in the museum’s IMAX theatre by one of the stars of the film, experimental physicist Monica Dunford, for a revealing pre-screening conversation with broadcaster Alok Jha.

Dunford, who was a relative newcomer to CERN in Geneva when Levinson began filming for Particle Fever in 2007, is one of six scientists and engineers Levinson chose to follow out of more than 10,000 scientists from over 100 nations at CERN. She told the audience that her motivation for getting involved in the film was partly to change attitudes about scientists. As she put it, “my goal is to tell people what I do and them say awesome and not recoil in horror.”

Mark Levinson, a physicist turned filmmaker and Monica Dunford, physicist and star of the film “Particle Fever” pictured in the Collider exhibition.  Part of the Collider events programme “Particle Fever” - a special screening of the film with pre-screening Q&A about physics and filmmaking hosted by Alok Jha (Guardian Science correspondent) with director Mark Levinson, a physicist turned filmmaker and Monica Dunford, physicist and star of the film.

Mark Levinson, a physicist turned filmmaker and Monica Dunford, physicist and star of the film “Particle Fever” pictured in the Collider exhibition. 

With a beguiling mix of wit, levity and scientific gravitas, the film follows events at CERN as the LHC began circulating proton beams in 2008, the setbacks that followed, notably a ‘quench’ and explosive release of one ton of helium, and the jubilation – along with the tears of theoretician Peter Higgs – as history is made with the discovery of the Higgs boson in 2012, half a century after Higgs had glimpsed its existence with the help of mathematics.

Levinson, who worked on the movie with physicist/producer David Kaplan and editor Walter Murch (Apocalypse Now, The English Patient), was granted huge access and trust by the team at CERN, something he puts down to his own past as a particle physicist before he moved into film making.

Collider event “Particle Fever” Q&A. A special screening of the film with a pre-screening Q&A about physics and filmmaking hosted by Alok Jha (Guardian Science correspondent) with director Mark Levinson, a physicist turned filmmaker and Monica Dunford, physicist and star of the film.

The Science Museum hosted a  special screening of the film “Particle Fever” with a pre-screening Q&A about physics and filmmaking hosted by Alok Jha (Guardian Science Correspondent) with director Mark Levinson, a physicist turned filmmaker and Monica Dunford, physicist and star of the film.

He and Monica took the time to see our Collider exhibition to compare how our own creative team responded to the world’s greatest experiment: “It was fascinating and impressive to see the authenticity achieved in the Collider exhibition. Monica and I laughed that the detail even extended to the “telephone stations” and “physics cartoons” that are on bulletin boards all over CERN – and included an iconic photo from First Beam Day featuring Monica with a raised fist of celebration!”

The screening rounded off a series of events, staged in partnership with the Guardian, our media partner for Collider, which began with an extraordinary launch day with Professor Peter Higgs answering questions from a group of students from across the UK in our IMAX theatre. He was followed by novelist Ian McEwan and theoretical physicist, and Particle Fever star, Nima Arkani-Hamed sharing their thoughts on similarities and differences between the cultures of science and culture. The final IMAX event was a lecture by Stephen Hawking, who talked about the impact of the discovery of the Higgs and his life-long love of the Science Museum.

The grand finale of that day was a party launched by the Philharmonia Orchestra and attended by the speakers, along with Chancellor, George Osborne, the Director General of CERN, Rolf-Dieter Heuer, and director of the Science Museum Group, Ian Blatchford.

Collider runs at the Science Museum until 5 May 2014 (tickets can be booked here). The exhibition will then open at the Museum of Science and Industry in Manchester from May 23 – September 28 2014 (tickets available soon here).

Join our #smCollider Twitter Tour

Update: The Collider Twitter tour can now be seen below.

With just two weeks before our Collider exhibition closes, curator Harry Cliff will be inviting you to step inside the world’s greatest experiment as he takes you on an exclusive twitter tour of the exhibition on Thursday 17 April at 4.30pm (BST).

Curator Dr Harry Cliff in the Collider exhibition.

Curator Dr Harry Cliff in the Collider exhibition. Credit: Science Museum

Harry (who also works on the LHCb experiment at CERN) will live tweet his tour of the exhibition, sharing key objects used at CERN and explaining some of the science behind particle physics.

You can join the tour by following @sciencemuseum on Twitter at 4.30pm (BST) and by using #smCollider to ask any questions.

If you miss the tour (or don’t use Twitter) don’t worry, as we’ll be sharing the tour here on the blog. For more on particle physics and the fascinating work of CERN and our Collider exhibition read the Collider blog or watch our behind the scenes videos.

 

Collider runs at the Science Museum until 5 May 2014 (tickets can be booked here). The exhibition will then open at the Museum of Science and Industry in Manchester from May 23 – September 28 2014 (tickets available soon here).

Happy Cosmonautics Day!

Julia Tcharfas, Curatorial Assistant for our upcoming Cosmonauts exhibition, reflects on over fifty years of manned space flight.

I am thrilled to be part of the Science Museum team working on a new exhibition celebrating the achievements of the Russian space programme. Cosmonauts: Birth of the Space Age will bring together many unique artifacts that have never before been seen outside Russia, exploring some of the most remarkable and important stories from the dawn of the space age to Russia’s present leading role in space science and exploration.

Telling the story of the Cosmonauts is an important reminder of the remarkable achievements made by humans in little more than a century of scientific experimentation, cosmic speculation and daring risks. For someone of my generation, these achievements are regarded as an everyday reality. Humans now maintain a permanent presence, living and working in orbit, and so far over 500 international citizens have traveled to space, including cosmonauts, astronauts, taikonauts, as well as engineers, doctors, biologists, teachers, politicians, and even tourists. Every one of these space travelers owe their experience to the early work of the Russian Cosmonauts, and perhaps to one special pilot in particular.

53 years ago, on this day, April 12th, 1961, the Soviet pilot Yuri Gagarin inaugurated the era of manned spaceflight when he travelled into outer space in a rocket, completing a single orbit around the Earth in 108 minutes.

Cosmonaut Yuri Gagarin aboard the Vostok spacecraft.

Cosmonaut Yuri Gagarin aboard the Vostok spacecraft. Credit: Ria Novosti

Gagarin had been especially chosen from a group of 20 Russian pilots to be the world’s first cosmonaut. The decision was highly symbolic and political, and Gagarin’s working class upbringing and photogenic smile were just as important as his ability to withstand the extreme conditions of spaceflight.

The first 20 Soviet Cosmonauts. Yuri Gagarin is sitting to the left of Sergei Korolev the Chief Designer of the Soviet space programme.

The first 20 Soviet Cosmonauts. Yuri Gagarin is sitting to the left of Sergei Korolev the Chief Designer of the Soviet space programme. Credit: RIA Novosti

He was 27 years old the day of his legendary flight, dressed in a bright orange spacesuit and a helmet inscribed with ‘CCCP’ painted in red. The painted letters were a last minute addition, marking Gagarin as a Soviet citizen so that he would be recognized when found on his return.

He took off with the words ‘Poyehali!’ (Let’s go!).

Gagarin’s rocket was an adapted missile, called R-7 or ‘Semyorka’. The rocket carried his ‘Vostok’ spacecraft, which translates as ‘East’ in Russian. Vostok included a ball-shaped descent module – nicknamed the ‘tin can’, which Gagarin was strapped into and then shot into orbit like a cannon. With the passing years it seems astounding that such a seemingly rudimentary vessel enabled the first man to go to space.

As the news of the launch spread, people poured into the streets to celebrate the epic moment. My parents, who were children in the Soviet Union at the time of the launch, remember the day with great clarity. My mother recalls that the moment the news was announced people jumped to their feet and began to run. ‘Everyone was running and screaming, “We are flying!”’

In a way, the Soviet Union’s achievement turned fantasy into reality, for a moment transcending both the Earth’s atmosphere and the Cold War political climate of the era. Watching the cloud forms through his window, Gagarin told his ground control unit how beautiful the Earth looked.

Despite the worldwide attention, Gagarin’s flight had been shrouded in secrecy, especially his landing, the details of which were not released until the 1970’s. Most of the world was told that Gagarin was inside Vostok-1 in a complete process from take-off to landing. In fact, he came down by parachute separate from the descent module, landing safely on his feet. He famously greeted the first people he encountered with:

‘I am a friend, comrades, a friend.’

Gagarin returned to Moscow as a worldwide celebrity. Everybody wanted to hear what he had seen and felt. Invitations from many countries of the world began to pour in. Gagarin toured the world, always being welcomed with lavish parades and gifts. Along with his personal reputation, the event was commemorated by a myriad of monuments, art works, images, symbols, books, and memorabilia, which proliferated well beyond the Soviet Union. Some of those objects will be displayed in our Cosmonauts exhibition.

Yuri Gagarin, the first man in space, during his visit to France.

Yuri Gagarin, the first man in space, during his visit to France in 1963. Credit: Ria Novosti

Ever since 12 April 1961, the anniversary of Gagarin’s first flight has been celebrated in Russia and the former USSR countries as a holiday known as Cosmonautics Day. More recently the anniversary has been declared the International Day of Human Space Flight. The festivities are varied. A traditional ceremony takes place yearly in Russia, but new celebrations are still being imagined. A global event called Yuri’s Night has been organized since 2001 through social media. Such events are organized by people all over the world and include all night raves, film screenings, and other events to mark the occasion of the first human spaceflight.  However you choose to mark the occasion, this anniversary holds a profound meaning for all of us: it is a celebration of peace, cultural cooperation, and most importantly the idea that people can achieve extraordinary things.

Discover the dramatic history of the Russian space programme in our new exhibition, Cosmonauts: Birth of the Space Age, opening soon.

In Conversation with James Lovelock

By Laura Singleton, Press Officer

To celebrate the opening of Unlocking Lovelock, our new exhibition on James Lovelock, 94, we were treated to a special audience with the great man himself (listen below to the full conversation), as he joined Roger Highfield, Director of External Affairs, to discuss his career and  his new book, A Rough Ride to the Future (Allen Lane).

Lovelock began by talking about his early visits to the Science Museum at the age of 6 and how his passion for science was inspired by his childhood love of steam engines, notably the one developed by the blacksmith Thomas Newcomen and the Flying Scotsman. He said that learning about science at the Science Museum was far more useful than learning in the classroom.

The conversation moved onto his early career at the National Institute for Medical Research in Mill Hill as he talked about his work on developing cures for burns during World War II, and how he preferred to carry out painful experiments on himself rather than rabbits.

He talked about how this work brought him into contact with Stephen Hawking’s father Frank, and the moment he held the infant Hawking in his arms.

Lovelock discussed his next career move to work in Houston for NASA, which provided the perfect opportunity for his inventive skills – creating instruments,‘exceedingly small, simple bits of hardware’ to go on NASA’s rockets. After three years, this paved his way to setting up his own laboratory back in the UK.

When asked whether he sees any scope for anyone succeeding as a lone scientist, he explained how much easier it was to work as an independent scientist years ago when there was less competition due to an overall lack of scientists in the UK at the time. He remains suspicious of committee and consensus led science.

Describing himself as ‘half a scientist, half an inventor’ he explained to the audience that invention is driven by necessity.

This process is ‘largely intuitive’, he said, and ‘the main advances in the world have not been driven by science, but by invention.’

The conversation moved from his work ‘re-animating’ frozen hamsters in a microwave to the importance of his electron capture detector, ECD, a remarkably sensitive instrument to detect trace amounts of chemicals, and gas chromatography equipment (featured in the exhibition). He talked about his home laboratory at Clovers Cottage where a lot of his experiments took place. The laboratory had a “Danger Radioactivity!” sign used to deter burglars.

The ECD helped hone his thinking about Gaia, a holistic view of the world, where all life on Earth interacts with the physical environment to form a complex system that can be thought of as a single super-organism.

Roger Highfield and Jim Lovelock then looked at the origins of his Gaia hypothesis, how his friend, novelist William Golding came up with the catchy title, his work on the theory with the American biologist Lynn Margulis, the opposition Gaia faced in the early days, notably from Richard Dawkins, and his Daisyworld computer model.

Later, when asked by an audience member to defend the theory against the opposing view by someone like David Attenborough, Lovelock replied that ‘To fight for Gaia is worth it’.

You can discover more about the Unlocking Lovelock exhibition in Nature, the Guardian or by watching our exhibition trailer.

Waiting for the end of the world with my father, James Lovelock

As a new exhibition on James Lovelock opens, his daughter Christine recalls her science-filled childhood and the night they sat up waiting for a comet to destroy the Earth.

Photo of James Lovelock in his laboratory at Coombe Mill. Image credit: Science Museum

Photo of James Lovelock in his laboratory at Coombe Mill. Image credit: Science Museum

When I was a child my father took us to the Science Museum in London. His favourite exhibit was the Newcomen steam engine, built in the early 18th century to pump water from mines. He told us how much the museum had inspired him when he was a child. Science had become the abiding passion of his life, and as we grew up it was the background to ours as well.

We lived for a while at the Common Cold Research Unit, where my father worked, at Harvard Hospital near Salisbury in Wiltshire, and even became part of the research. Whenever we caught a cold the scientists put on parties for us where we would pass on our germs, as well as parcels, to the volunteers who lived in the isolation huts.

My strongest memories of my father during this period are the conversations we had about scientific ideas, whether on country walks or at the dining table. We often had fun working out plots for stories, including one he helped me to write about some fossil hunters on a Dorset beach who stumbled on a fossilised radio set – with shocking implications for the established science of geology.

When we moved back to Wiltshire, he turned Clovers Cottage into the world’s only thatched space laboratory. It was full of interesting equipment, much of it home-made, including an electric Bunsen burner. The cottage used to have a skull and crossbones in the window, with the warning “Danger Radioactivity!” My father always said this was a good way to deter burglars.

Clovers Cottage in Wiltshire, 'the world's only thatched space laboratory', where Lovelock worked for Nasa in the 1960s investigating the possibility of life on Mars. Image credits: Christine Lovelock

Clovers Cottage in Wiltshire, ‘the world’s only thatched space laboratory’, where Lovelock worked for Nasa in the 1960s investigating the possibility of life on Mars. Image credits: Christine Lovelock

One evening in the 1960s, my father arrived home from a trip to Nasa’s Jet Propulsion Laboratory in California with some frightening news. A comet had been spotted that was expected to hit Earth that night. The Nasa astronomers back then didn’t have today’s computer technology and said there had been no time to go public with the news.

My father wasn’t worried about the potential disaster. His reaction was a mixture of apprehension, curiosity and excitement. As he said, “If it hits us and it’s the end of the world, we won’t know anything about it, but if there is a near miss, then we might see some amazing fireworks.” While the rest of Britain slept a peaceful sleep, we packed up the car and drove to the highest hill nearby.

I’ll always remember that night, when we snuggled under blankets in the darkness, waiting and watching for what might have been the end of the world. It didn’t happen, of course. The astronomers got it wrong, as my father expected they would, but in an odd – and unscientific – way we felt we had done our bit to keep the Earth safe.

James Lovelock and his daughter Christine collecting air samples in Adrigole, South-West Ireland, 1970. Image credits: Irish Examiner

James Lovelock and his daughter Christine collecting air samples in Adrigole, South-West Ireland, 1970. Image credits: Irish Examiner

As I grew older I began to help my father more with his work. One day I will never forget is when we went up Hungry Hill on the Beara Peninsula in Ireland in 1969. Our mission was to collect samples of the cleanest air in Europe, blowing straight off the Atlantic. My father then drove straight on to Shannon Airport, and flew with the samples to the United States.

On arrival, a customs officer thought my father was being facetious when he said the flasks contained “fresh Irish air”. An argument ensued in which the official demanded that the flasks be opened, which would have made the whole journey pointless. Fortunately, sense prevailed and the samples reached their destination safely.

Christine Lovelock is an artist who campaigns to preserve the countryside.

You can watch our Youtube video of James Lovelock talking about the inspiration behind his inventions and what the Science Museum means to him.

Win a walk-on-part in The Energy Show + a weekend break in London

Stand back and cover your ears – a trip to the theatre just got explosively exciting! The Energy Show is on tour around the country until July 22, when it returns to London for a spectacular final two weeks at the Science Museum.

To mark the launch of this fun-filled show, we’ve teamed up with The Sunday Mirror to give one lucky child (aged 7 – 12) the opportunity of a lifetime – a walk-on part in The Energy Show in London. This great prize includes three tickets for family or friends and an overnight stay at the four-star Cavendish Hotel.

Three runners-up will also win four tickets each to the show at their chosen tour venues. Visit sciencemuseum.org.uk/energyshow for details on dates and venues.

The Energy Show

How to enter
Q) Which of these is NOT a famous scientist?
1) Marie Curie
2) Albert Einstein
3) Simon Cowell

CALL 0900 586 4613 and follow the instructions (61p/min). Or TEXT SMHOL followed by a space then your answer (1, 2 or 3), your name, full address, postcode and email address to 85858 (£1/text).

Terms & Conditions

1. Lines close 11.59 pm on Saturday April 12, 2014. Landline calls cost 61p/min plus network extras max 2.5 mins. Payphones and mobiles will be higher. Texts cost £1 each plus one standard network rate message. Entries received after this date may not be counted but will still be charged. To decline marketing messages add NOINFO to the end of your text.
2. Employees of Trinity Mirror plc, Science Museum Group, associated companies, agents or anyone involved in the running of the competition are excluded from entering.
3. ONE winner (aged 18/over) drawn at random after lines close from all correct entries. Winner must be child’s parent/legal guardian, contactable by 17:00 April 21, 2014 and available August 2-3, 2014.
4. PRIZE: walk-on part for one child aged 7–12 in one performance of The Energy Show at London’s Science Museum, 12.00 on winner’s choice of either Saturday August 2,  2014 or Sunday August 3, 2014. Includes performance tickets for 3 family members, overnight stay for 4 the night before the show, plus 4 Science Museum tickets to Red Arrows 3D experience. Winner and parent/guardian required to attend rehearsals and health & safety briefing at 09.00 on the day of the show. By entering Winner agreed to take part in any media activity carried out as part of this competition including any post-competition publicity if required. The Science Museum will seek the necessary consents for filming.
5. THREE Runners-up: each 4 standard tickets giving one admittance to The Energy Show at any tour venue of winner’s choice (subject to availability).
6. Travel, any other costs/expenses not included with any tickets (winner’s cost & responsibility)
7. Trinity Mirror Plc accepts no liability whatsoever for winner’s subsequent participation in this prize.
8. Prizes non-transferable, no whole/part cash alternatives.
9. Standard Trinity Mirror plc Rules apply, see www.mirror.co.uk/rules
10. SP: JMedia UK Ltd, SW4 7BX Helpline: 0844 800 1188

Where’s that huge iceberg headed?

Corrinne Burns blogs on ADIOS, a GPS enabled javelin which helps tracks icebergs. You can see ADIOS on display in the Museum’s contemporary science gallery.    

Why would you put a GPS tracker onto a glacier? These positioning devices are more commonly associated with cars. It’s not like glaciers are in any danger of getting lost – or of ending up in a field of bemused cows, for that matter.

Actually, there’s good reason why scientists track the movement of ice. The Antarctic Ice Sheet is the biggest unknown when it comes to predicting sea level change.

An iceberg breaking away. Credit: NASA

An iceberg breaking away. Credit: NASA

Glaciers move – we all know that. It’s natural. But as the ocean temperature rises, glaciers move at an increased rate. That’s because melting, triggered by the warming sea, causes the ice streams within the glacier to flow faster and faster.

And of course, as glaciers melt, the global sea level rises.

So this “flow velocity”, as glaciologists call is, can be used as a way to track rising sea levels. That’s why it’s so important to track the movement of glacial ice streams.

Hilmar Gudmundsson works at the British Antarctic Survey, keeping an eye on ice dynamics. He’s been putting GPS trackers onto glaciers for a while now. Traditionally, a helicopter lands a crew onto the glacial surface, and then they walk across the frostbitten landscape, implanting trackers as they go.

But Hilmar knows how dangerous walking on ice can be – deep crevasses await the unwary. So he helped to invent a rather unusual way to deploy such trackers, so that no human need even set foot on the ice.

The solution was ADIOS – the Aircraft-Deployable Ice Observation System. ADIOS is, essentially, a GPS tracker embedded within a 2.5-metre long javelin, designed to be dropped from an aircraft flying a few hundred metres above the ice. One such ADIOS device is currently on display in the Museum’s Antenna gallery.

ADIOS – the Aircraft-Deployable Ice Observation System. Credit: British Antarctic Survey

ADIOS – the Aircraft-Deployable Ice Observation System. Credit: British Antarctic Survey

ADIOS takes inspiration from technology originating from World War Two – the sonobuoy. These were floating sonar transducers, deployed by aircraft into the ocean to listen out for warships. Hilmar and colleagues adapted this wartime concept for the 21st century Antarctic – but glaciers do present some challenges that water does not.

For one, the electronics needed to survive the impact on hard ice – a polyethylene cushion and a spring help to protect them from impact forces of up to 1200G, and a parachute slows and stabilises ADIOS’ descent. You also need to consider the effects of snowfall – anything placed on the surface is likely to be covered in snowdrifts pretty quickly.

Those considerations led to the long, aerodynamic javelin-like design.

The GPS tracker itself is positioned towards the sharp nosecone-end of ADIOS, and, after landing, sits below the surface of the ice. It transmits through an antenna situated at the opposite end of the javelin – which, thanks to four “snow brakes”, remains above the snow surface. It is so long that it can remain uncovered even following thick snowfall, transmitting for up to two years.

Hilmar’s interested in part of Antarctica called the Pine Island Glacier, or PIG. His team deployed 37 ADIOS sensors onto the glacier in January of last year. PIG is significant because of all the icy regions on Earth, this glacier is showing the biggest changes in ice movement and thickness, so we need to keep an eye on it. “We can already see that the rate of ice flow is increasing, since we deployed those units,” says Hilmar.

Even more dramatically, a few months ago a 700 square km bit of PIG broke off, forming a massive rogue iceberg that is now further fragmenting and drifting towards shipping lanes. Two ADIOS’ sit on that rogue berg – not by coincidence. “We knew that this ice was breaking away from PIG – that’s why we put two ADIOS units on it,” says Hilmar. As the rogue iceberg has broken apart further, those units now sit on two different fragments – and are still sending back live data about position.

So, as well as telling us about glacial melt, ADIOS units can be used to track the movements of icebergs heading for shipping lanes. Will we see more air-deployed GPS trackers on icebergs around the world, then? “This is now tried-and-tested technology. There’s a lot of interested from other researchers, and we’ll let them use the design,” says Hilmar. “And for me – I’m relieved that it works!”

You can find out more about ADIOS, in the Science Museum’s contemporary science gallery from now until April 10, 2014.