Monthly Archives: August 2014

A Hedonistic Night at the Museum

Louis Buckley from Guerilla Science blogs about the August Lates, which was themed around the science of sex, drugs and music.

Being accustomed to working at music festivals, the rest of the Guerilla Science team and I are, shall we say, not unfamiliar with the hedonistic themes explored at this month’s Science Museum Lates.

For those of you who haven’t heard of us before, Guerilla Science is an organisation that specialises in taking science to summer festivals all across the UK – from Glastonbury and Green Man to the Edinburgh Fringe and the Secret Garden Party.

Visitors mingling at the August Lates. Image credit: Science Museum

Visitors mingling at the August Lates. Image credit: Science Museum

Working in unfamiliar and often unexpected settings, we set out to challenge audiences and scientists alike, getting them to consider and experience scientific ideas in new ways that are enlightening, inspiring and – we hope – entertaining too!

While not our usual habitat, bringing a sex, drugs and music themed programme of events to the raucous and exhilarating environment of the Science Museum Lates was an offer far too good for Guerilla Science to turn down.

So, what did we get up to on the night itself? Guerilla Science put on 14 workshops, demonstrations and talks across the museum, from mapping erogenous zones and anatomical life drawing in the fourth and fifth floor medical galleries to crocheting chromosomes among the strange and challenging materials gallery on the second floor.

Lates visitors crocheting chromosomes at August Lates. Image credit: Science Museum

Lates visitors crocheting chromosomes at August Lates. Image credit: Science Museum

It isn’t possible to go through them all in detail, but I’ll pick out a few of my personal highlights from the night to share with those that couldn’t make it – or can’t remember being there!

First up, Guerilla Science’s own Zoe Cormier filled the Museum’s theatre with tales from her new book Sex, Drugs and Rock n’ Roll’, while chemist extraordinaire Andrea Sella treated audiences to a bubbling and explosive journey through the science of distillation.

On the third floor we ran a range of hands-on activities, from experimental hangover cures with food scientist Becki Clark to examining drugged-up fruitfly mutants with Dr James Hodge and sniffing a range of mystery fragrances with chemists Rose Gray and Alex Bour.

My personal favourite, though, was up among the aeroplanes of the Flight gallery, where sexologists Soazig Clifton and Clare Tanton discussed the findings of their national survey of sexual habits and attitudes and tested these against the audience’s own experiences and perceptions.

All in all it was a thoroughly enjoyable evening and a fantastic opportunity to create something for the Museum’s wonderful audience. Most importantly, we hope the Lates punters enjoyed Guerilla Science’s attempt to bring a little bit of festival magic into the galleries of this grand old institution, and might be tempted to check out one of our events in future.

Guerilla Science’s book ‘Sex, Drugs and Rock n’ Roll, the Science of Hedonism and the Hedonism of Science’ is out now, published by Profile Books.

The next Lates is on 24 September and is all about Magic and Illusion

 

A WEEE waste recycling challenge?

Sarah Harvey, Project Curator of The Rubbish Collection, talks to Dr Philip Morton, Chief Executive of REPIC about the challenges of dealing with growing volumes of electrical and electronic waste.

REPIC is the largest not-for-profit WEEE (Waste Electrical and Electronic Equipment) recycling scheme in the UK. Instead of letting valuable or harmful waste and scarce raw materials go to landfill, REPIC’s job is to recover and transport used electrical goods and batteries to specialist treatment plants. Upon arrival at the plant, the WEEE waste can be safely handled and recycled into new usable raw materials.

What is WEEE waste?

Every year, people in the UK buy around 1.5 million tonnes of electrical and electronic equipment, like toasters, TVs, washing machines and computers. We throw away about one million tonnes of equipment, so WEEE waste is one of the fastest growing waste streams in the UK and in the EU. It’s important that we take action now to stop it from piling up.

Some of the components used to make electronic goods can be hazardous and harmful to the environment, while others can be recycled and reused. Some are even precious and contain gold, silver, indium or palladium. It’s amazing to think that WEEE contains 40 times more gold than gold ore!

WEEE waste in The Rubbish Collection exhibition. © Katherine Leedale

WEEE waste in The Rubbish Collection exhibition. © Katherine Leedale

What are the biggest challenges faced by the industry in recycling and recovering these materials?

A big problem is the difficulty in separating the complex scarce trace metals using the technology currently available. Different proportions of trace materials are present in different bits of WEEE and some materials bind together, making separation a challenge.  At present, only a tiny percentage of these metals is captured in the recycling process, so it isn’t sustainable. 

What can people do to help?

Just as we separate our plastic bottles and tins from paper and compostables, we need to separate our old electrical appliances and take them to a local recycling centre.

As with electricals, it’s easy for batteries to end up in landfills if the proper recycling channels are not used. Batteries contain chemicals that can be hazardous if released into our soil, water and air.

Batteries in The Rubbish Collection exhibition. © Katherine Leedale

Batteries in The Rubbish Collection exhibition. © Katherine Leedale

But there is an alternative. You could save your batteries and take them to special battery bins at shops, schools and recycling centres. This ensures the batteries are recycled responsibly.

Our top three tips are:

  • Repair or re-use used electricals if possible
  • Recycle, but don’t make a special trip (check our website www.responsible-recycling.co.uk).
  • Choose energy and eco-efficient products where possible when buying replacements

What do you think the industry will be like in 50 years time? 

To meet the new EU directive we need to recycle 85 percent of WEEE generated in the UK by 2018. The value of WEEE will be higher as there will be less rare metals and raw materials to extract from the Earth.  Advances in technology will mean that electrical goods will be even lighter, more compact and flexible. Think projected keyboards, flatter TV screens – we’re already seeing roll up TV screens – so expect more to come.

 

 

Your future without antibiotics?

Georgie Ariaratnam, Assistant Content Developer, blogs about the rise of antibiotics, the subject of a display in the Museum’s Who Am I? gallery

Antibiotic resistance is one of the biggest challenges of our time. It affects all of us, so perhaps unsurprisingly, it was declared the winner of the Longitude Prize 2014.

The new antibiotics display in the Museum's Who Am I? gallery. Image credit: Science Museum

The new antibiotics display in the Museum’s Who Am I? gallery. Image credit: Science Museum

At the Science Museum, we decided to examine this topic in more depth with a new exhibit, Your future without antibiotics?, which explores the rise of antibiotic resistance and the latest research to tackle it.

The exhibit, currently on display in our Who am I? gallery, changes every few months, giving the Science Museum the opportunity to explore current and significant research stories in health, genetics and neuroscience. With over a million people visiting the Who am I? gallery each year, it’s important to design exhibits that are interesting and relevant to our visitors’ lives.

We chose to tell three main stories in the display case. The Rise of Resistance looks at how bacteria have become resistant, Radical Research focusses on the latest research to tackle resistance and Stop the Spread explores how to prevent the spread of infection.

A close up look at the new antibiotics display case in the Who Am I? gallery. Image credit: Science Museum

A close up look at the new antibiotics display case in the Who Am I? gallery. Image credit: Science Museum

The display features unique and intriguing objects to tell these stories. You can see a Star Trek-inspired hand-held ‘tricorder’ which uses a virus to identify bacterial infection.  Alongside, you can spot a keyboard and mobile phone cover coated with the world’s first light-activated antimicrobial surface that also works in the dark. Other items include a bio-engineered medical honey which can kick start the healing process in wound treatment. There is even a giant, lime green stick insect, whose guts researchers are studying for new antibiotic compounds.

To develop the display case, we spoke to many institutions that focus on tackling antibiotic resistance including the World Health Organisation, Department of Health, Public Health England and Antibiotic Action. The exhibit also features research from scientists at University College London, University of Birmingham and the University of Leicester.

Your future without antibiotics? opened on 18 July and will be on display in the Science Museum’s Who Am I? gallery until late November 2014.

Going down the drain

In the latest of our blogs linked to The Rubbish Collection, Curator Sarah Harvey talks to Nick Mills, Waste Innovation Manager at Thames Water about what happens to our sewage and what the future holds for wastewater.

Sarah: What do Thames Water do with our sewage?

Nick: We have 350 sewage works and 68,000 miles of sewers across our region, which stretches from East London to the Cotswolds in the west. Last year, we removed and treated 4,369 million litres of sewage from 15 million customers. At our 350 sewage works we treat the sewage to remove contaminants and return it safely to the environment, it is often cleaner than the water in the river.

Sarah: What happens to the end products of the processing?

Nick: The main end-product of the sewage treatment process is something called sludge. This energy rich by-product is put to good use in anaerobic digestion, producing renewable energy that helps power our treatment sites. The digested sludge is then recycled to agricultural land.

Sludge having been put through a Bucher press to reduce liquid content © Thames Water

Sludge having been put through a Bucher press to reduce liquid content © Thames Water

Sarah: What are the biggest challenges you face in dealing with our sewage/ waste water?

Nick: London has outgrown its sewer system. The Victorian sewers are in great condition, but simply not designed for today’s population. They were designed for just over two million but are used today by just over six million. The proposed Thames Tideway Tunnel will stop tens of millions of tonnes of raw sewage flowing into the Thames every year via the outfall system. It is a must-do job. We can’t keep treating the Thames as a sewer.

The Lee Tunnel © Thames Water

The Lee Tunnel © Thames Water

Sarah: What are the strangest or most difficult things to deal with that people throw down the drains?

Nick: ‘Bin it – don’t block it’ is our campaign to end the misery caused by fatbergs. Leftover cooking fat and oil poured down the sink will set hard. This creates stinking, pipe-blocking fatbergs beneath your house or in your street.

A sewer flusher in London digging out a fatberg © Thames Water

A sewer flusher in London digging out a fatberg © Thames Water

Wet wipes are another big no-no because they are made of plastic. They don’t break down like toilet tissue, clinging to fat and clogging up the system. If drains get blocked, what you flush can come back up through your toilet or even your sink.

Sarah: What can consumers and organisations do better?  Is there a top 3 list of things people could do differently to help?

Nick: Our message is simple, if it’s not water, toilet tissue or poo, please… ‘Bin it – don’t block it’.

Sarah: What do you think the industry will be like in 20 years’ time? What are the new innovations and technologies that you are exploring at the moment?

Nick: In 20 years’ time I can see the wastewater industry becoming a net energy producer, by employing more efficient processes and increasing energy recovery. Combining advanced anaerobic digestion and technologies like pyrolysis, large increases can be made. Our Innovation team are busy demonstrating this at the moment. Phosphorus, a finite resource essential to life as we know it, will be recovered at every major sewage works and sold competitively as a fertiliser to farmers, this has also been demonstrated recently at our Slough sewage works by the Innovation team.

Innovation works at Slough © Thames Water

Slough sewage works © Thames Water

Sarah: What did you think when you first heard about Joshua Sofaer’s The Rubbish Collection project?

Nick: I think it is great. It shows the harsh reality of waste, but at the same time reveals the great work that people do behind the scenes to keep society moving. I hope it will encourage a new generation to start what is a very interesting and rewarding career as there are huge challenges yet to be solved.

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.

Roaming Far and Wide – the Science Museum in China

Outreach Officers Ronan Bullock, Aasiya Hassan and Susie Glover report back after their outreach trip to Hong Kong and China.

In March 2014, the Science Museum’s Outreach team was invited for the second time by The British Council in Hong Kong to deliver a series of shows and workshops as part of their Science Alive Festival. The theme of this year’s festival was ‘The Code of Life’ and we disgusted audiences with blood, guts and snot, exploring the science behind the human digestive system, blood and materials. We spent three days with our hosts at the Hong Kong Science Museum and a further nine days visiting twenty two schools across Hong Kong and New Territories. We experienced many different educational settings from government funded local schools to private international schools reached a combined audience of over 7,000!

Proving that no distance is too great for the Outreach team, we then caught a train to Dongguan City in mainland China to deliver events hosted by The Dongguan Science & Technology Museum. Over the course of four days we engaged with audiences at the museum and two local schools, reaching over 3,000 people. This visit continued our relationship with the museum, having hosted a number of free science shows performed by their staff right here in London, in the Science Museum, back in September 2013.

During our busy schedule we found time to sample some of the interesting local cuisines, tour both museums and see some local sites, the highlight of which was taking a cable car to see Hong Kong’s famous giant Tian Tian Buddha.

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. The foreground is littered with flattened rocks and the horizon is just visible at the tops of the top corners. Credit: NSSDC Photo Library

How to land on Venus

On the anniversary of Venera 7’s launch – the first spacecraft to successfully land on Venus – curator Doug Millard reflects on the challenge of exploring other worlds.

Over a 20-year period from the mid-1960s, Soviet scientists and engineers conducted one of the most successful interplanetary exploration programmes ever.

They launched a flotilla of spacecraft far beyond Earth and its Moon. Some failed, but others set a remarkable record of space firsts: first spacecraft to impact another planet, first controlled landing on another planet and the first photographs from its surface. The planet in question was not Mars – it was Venus.

Our knowledge of Venus at the time had been patchy. But as the Soviet probes journeyed down through the Venusian atmosphere it became clear that this planet – named after the Roman goddess of love – was a supremely hostile world. The spacecraft were named Venera (Russian for Venus) and the early probes succumbed to the planet’s immense atmospheric pressure, crushed and distorted as if made of paper.

Venera 3 did make it to the surface – the first craft ever to do so – but was dead by the time it impacted, destroyed by the weight of the air. Venera 4 was also shattered on the way down, but it survived long enough to return the first data from within another planet’s atmosphere. The engineers realised, though, they would have to reinforce still further the spacecraft’s titanium structures and silica-based heat shield.

The information coming in from the Venera probes was supplemented with readings from American spacecraft and ground-based observatories on Earth. Each added to an emerging picture of a hellish planet with temperatures of over 400 °C on the surface and an atmospheric pressure at ground level 90 times greater than Earth’s.

Spacecraft can only be launched towards Venus during a ‘window of opportunity’ that lasts a few days every 19 months. Only then do Earth and Venus’ relative positions in the Solar System allow for a viable mission. The Soviets therefore usually launched a pair of spacecraft at each opportunity. Venera 5 and 6 were launched on 5 and 19 January 1969, both arriving at Venus four months later.

There had not been time to strengthen these spacecraft against the unforgiving atmosphere, so instead the mission designers modified their parachutes so that they would descend faster and reach lower altitudes, sending back new data before their inevitable destruction.

Venera 7 descent module, (engineering model, scale 1;1), 1970  This descent module with parachute lanyards clearly visible was used for drop tests on Earth in 1970

This Venera 7 descent module (engineering model) with parachute lanyards clearly visible, was used for drop tests on Earth in 1970. Credit: Lavochkin Association/Photo: State Museum and Exhibition center, ROSIZO

Launched on 17 August 1970, Venera 7 made it intact to the surface of Venus on 15 December 1970 – the first probe ever to soft land on another planet. Its instruments measured a temperature of 465 °C on the ground. It continued to transmit for 23 minutes before its batteries were exhausted.

Venera 8 carried more scientific instruments which revealed that it had landed in sunlight. It survived for another 50 minutes. Venera 9, the first of a far stronger spacecraft design, touched down on 22 October 1975 and returned the first pictures from the surface of another planet. It too showed sunny conditions – comparable, the scientists reckoned, to a Moscow day in June.

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. The foreground is littered with flattened rocks and the horizon is just visible at the tops of the top corners. Credit: NSSDC Photo Library

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. Credit: NSSDC Photo Library

The surface was shown to be mostly level and made up of flat, irregularly shaped rocks. The camera could see clearly to the horizon – there was no dust in the atmosphere, but its thickness refracted the light, playing tricks and making the horizon appear nearer than it actually was. The clouds were high – about 50 km overhead.

The Soviet Union now had a winning spacecraft design that could withstand the worst that Venus could do. More missions followed, but then in the early 1980s the designers started making plans for the most challenging interplanetary mission ever attempted.

This photograph was taken by the Venera 13 camera using colour filters. It shows the serrated edge of the Venera 13 decent module gripping the soil on the rocky surface of Venus.  Credit: NASA History Office

This photograph was taken by the Venera 13 camera using colour filters. It shows the serrated edge of the Venera 13 decent module gripping the soil on the rocky surface of Venus.
Credit: NASA History Office

Scientists around the world were keen to send spacecraft to Halley’s Comet, which was returning to ‘our’ part of the Solar System on its 75-year orbit of the Sun. America, Europe and Japan all launched missions, but the Soviets’ pair of Vega spacecraft were the most ambitious, combining as they did a sequence of astonishing manoeuvres, first at Venus and then at Halley’s Comet.

Both craft were international in their own right, with many nations contributing to their array of scientific instruments. They arrived at Venus in June 1985.

Each released a descent probe into the Venusian atmosphere. Part of it released a lander that parachuted down to the surface while the other part deployed a balloon, with a package of scientific instruments suspended underneath that first dropped and then rose through the atmosphere to be carried around the planet by winds blowing at well over 200 miles per hour.

Meanwhile, the main part of each Vega spacecraft continued on past Venus, using the planet’s gravity to slingshot itself towards an encounter with Halley.

A little under a year later both arrived a few million kilometres distant from the comet. Both were battered and damaged by its dust, but their instruments and cameras returned plenty of information on the ancient, icy and primordial heavenly body.

A golden age of Russian planetary exploration had come to an end.

Russia plans to return to Venus, but meanwhile its Vega spacecraft, their instruments long dead, continue to patrol the outer reaches of the Solar System, relics of the nation’s pioneering days of space exploration.

Discover the dramatic history of the Russian space programme in our upcoming exhibition, Cosmonauts: Birth of the Space Age.

Sending messages across the Atlantic: 156 years on from the first transatlantic cable

Chloe Vince, Science Museum Volunteer, tells the dramatic story of the laying of the first transatlantic cable, one of the highlights of our new Information Age gallery, which opens in October.

If you needed to send a message to North America, you wouldn’t think twice about drafting an e-mail, hitting ‘send’ and your message arriving in the recipient’s inbox almost instantly.

In 1858, however, communications were much slower. In those days, a message would take up to 10 days to arrive. This was the time it took for a ship to travel across the Atlantic.

Specimens of the first Atlantic submarine cable, 1858. Credit: Science Museum / SSPL.

Specimens of the first Atlantic submarine cable, 1858. Image credit: Science Museum / SSPL.

Things changed in the August of 1858, when the first message was sent via a transatlantic telegraph cable, which ran from the east coast of North America to the West Coast of Ireland. Messages could now be sent in a matter of minutes, dramatically changing the history of transatlantic communication.

A section of the original transatlantic cable, encrusted with marine growth. Image credit: Science Museum.

A section of transatlantic cable, encrusted with marine growth. Image credit: Science Museum / SSPL.

Experimenters had been investigating batteries and electromagnetism to develop a communication system since the early 19th century. The first practical system was executed successfully in the UK by the partnership of Charles Wheatstone and William Cooke. They used an electrical current to deflect magnetic needles which could be made to point to letters on a backboard. By the time of the 1858 transatlantic cable, their system had been developed and widely adopted for railway signalling across Britain.

Cooke and Wheatstone's Double Needle Telegraph, 1844. Image credit: Science Museum / SSPL

Cooke and Wheatstone’s Double Needle Telegraph, 1844. Image credit: Science Museum / SSPL

American experimenter Samuel Morse (of Morse code fame), was also working on developing telegraphy. His system used a single circuit to send an electric signal along a wire to a receiver at the other end. Instead of using needles indicating letters of the alphabet, Morse’s system used a code of dots and dashes to spell out words. Morse received funding to use this technology to set up a telegraph system between Washington and Maryland in the USA. The telegraph became an instant success. People relished the ability to send and receive information much more quickly than before, and as a result the telegraph system expanded across America and Europe.

Morse key, c 1850-1870. Image credit: Science Museum / SSPL

Morse key, c 1850-1870. Image credit: Science Museum / SSPL

Soon after, in 1856, the Atlantic Telegraph Company was set-up with the objective of laying a cable across the Atlantic Ocean, connecting America with Europe. Luckily, opinions of the technology were high, which meant shares in the company sold quickly. As soon as enough money was raised, the first transatlantic cable, consisting of seven copper wires and recorded as weighing one ton per nautical mile, was laid from America to Ireland.

(Lord Kelvin) Thomson's mirror galvanometer (land type) used at Valentia Island end of the original Atlantic cable in 1858. Made by White & Barr, Glasgow. Image credit: Science Museum / SSPL.

(Lord Kelvin) Thomson’s mirror galvanometer (land type) used at Valentia Island end of the original Atlantic cable in 1858. Made by White & Barr, Glasgow. Image credit: Science Museum / SSPL.

Queen Victoria sent the first official transatlantic telegram. She sent a message to US president James Buchanan congratulating him ‘upon the successful completion of this great international work.’  The message travelled through 2,500 miles of cable and took 16 hours, a dramatic improvement on the 10 days it would have taken beforehand. The same message was repeated back to Valencia in Ireland in only 67 minutes.

Unfortunately, the success enjoyed by this first transatlantic cable did not last. There were problems with the cable, and within a month it had failed completely. However, the desire for speedy transatlantic communication was great enough to attract more funds to try again.  A further attempt in 1866 was successful.

The consequence of this new form of communication was huge. By the end of the 19th century, new technologies began to emerge. The telegraph was replaced by telephony and these days we rely on the internet for high speed communication. However, the telegraph was the first technology that allowed us to communicate quickly and reliably over long distances, and acted as a turning point in communication history.

You can explore more about the laying of the first transatlantic cable in our Information Age gallery, which opens on 25 October.

 

Simon Says… “be smart”

Charlotte Connelly, Content Developer, blogs about the IBM Simon, the first smartphone to go on public sale.

Twenty years ago, on 16 August 1994, the Bellsouth IBM Simon hit the American market. Weighing in at a hefty half a kilogram, and looking rather like a grey brick, the Simon was advertised with a not-so-snappy slogan declaring it to be “The World’s First Cellular Communicator”.

Although the slogan was a bit of a mouthful, the Simon really did break new ground. It took some of the best technology that the handheld computing world had to offer – personal digital assistants (PDAs) were all the rage in the early 1990s – and combined it with a mobile phone. 

With a stylus and touch screen, Simon’s users had all sorts of software applications, or apps, at their fingertips. They might sketch a drawing, update their calendar, write notes on a document, or send or receive a fax.

The Simon was, in effect, the world’s first smartphone; a device that could make calls and be programmed to do a wide range of other things. The built-in features could even be expanded by plugging in memory cards – not quite an app store, but long similar lines.

The Science Museum’s Simon was owned by a project manager for a construction company in the United States. He found the Simon invaluable because his office could fax him site plans to review. He could check them wherever he was and fax them back saving hours of shuttling plans physically around the country.

Despite having some loyal users, and after selling around 50,000 units, the Simon was withdrawn from sale after only 6 months. There were still some key pieces of the puzzle missing to enable a device like the Simon to become really successful. In 1994 the web was in its infancy, so the idea of downloading apps was not practical.

The mobile internet, accessible through mobile phones, was virtually non existent – explaining why fax was a key feature of the Simon. The hardware was also limited. With a battery that only lasted an hour in ‘talk mode’ it wasn’t practical to rely on the Simon to keep you in touch all day long. To top it all off, at $899 the Simon was simply too expensive for most people to justify.

Despite its imitations and brief foray in the marketplace, the Simon brought together many of the key things that underpin today’s smartphones. The next big splash in the market came over a decade later. By then, 3G mobile phone networks were available, online app stores were a genuine possibility and microprocessor technology had advanced enough to pack a really powerful computer into a small handheld device.

The launch of the iPhone 3G marked a turning point, and mobile phone companies saw the amount of data being used spike almost over night. (Source: Science Museum)

The IBM Simon will go on display in the Science Museum’s Information Age gallery which opens on 25 October 2014.

Shedding light on the matter of rubbish

In the latest of our blog series linked to The Rubbish Collection, the Science Museum’s Inventor in Residence Mark Champkins finds an ingenious use for our discarded materials.

The second phase of The Rubbish Collection exhibition is open at the Museum until 14 September. Having documented every piece of waste that passed through the Museum for a month, this second phase is a chance to see what would have been thrown away.

Of the material that hasn’t been selected for display, I collected a small box of bits that I hoped to turn into a product that we might sell in the shop. I like the idea that with a little bit of effort and imagination, items that would otherwise be chucked, can be turned into something desirable. Unfortunately the collection of items in the box that I had gathered didn’t look at all desirable. A couple of umbrellas, some bits from a light fitting, an old copper funnel, an ash tray, some plastic cutlery, some glass cups and a selection of ball bearings didn’t look very promising.

A box of bits © Mark Champkins

A box of bits © Mark Champkins

The germ of my idea came from digging out the copper funnel and investigating it further. It was heavily corroded and covered in green verdigris, but underneath was structurally solid, and a beautiful shape.

I read somewhere that vinegar could be used to clean copper, so I popped down to the café, to get a couple of sachets to try out. It turns out it does a reasonable job on lightly tarnished areas, but can’t handle the extent of corrosion on the funnel. However, it did encourage me that the funnel could be saved.

An old copper funnel © Mark Champkins

An old copper funnel © Mark Champkins

Next I pulled apart the umbrellas, lined up everything from the box and had a think what I might make. A happy coincidence was that the handle from the umbrella fitted exactly into the top of the funnel.

 

An umbrella handle © Mark Champkins

An umbrella handle © Mark Champkins

My first thought was to make some sort of loudspeaker people could shout through. Next, I thought the umbrella handle might plug the funnel to make a water-tight vase or container of some sort. Finally, looking at the shining clean patch of copper I thought, coupled with a 1950s-style squirrel cage bulb, it might make a really nice light fitting.

The next step was to recondition the copper funnel. In the basement, the Museum has metal and wood workshops responsible for building, installing and maintaining the structures for new exhibitions. Amongst their equipment is a sandblasting machine, which I used to blast the corrosion from the funnel.

Sandblasting the copper funnel © Mark Champkins

Sandblasting the copper funnel © Mark Champkins

I decided to leave the matt finish left from the sand blasting on the inside surface, and polish up the outside. Using Brasso and eventually a buffing wheel I polished up the outer surface.

Polishing © Mark Champkins

Polishing © Mark Champkins

Using a buffing wheel © Mark Champkins

Using a buffing wheel © Mark Champkins

To ensure the lamp remains pristine, I decided to use a polymer based lacquer, applied in the workshop’s spray booth.

In the spray booth © Mark Champkins

Finally I added the umbrella handle, and a lighting flex and fitting. I think the finished light looks rather good. It’ll be available for purchase in the Museum shop from mid August.

The finished light © Mark Champkins

The finished light © Mark Champkins

The lamp made from Museum rubbish © Mark Champkins

The lamp made from Museum rubbish © Mark Champkins

The finished lamp at work © Mark Champkins

The finished lamp at work © Mark Champkins

The light will be on sale in the Museum shop in mid-August © Mark Champkins

The light will be on sale in the Museum shop in mid-August © Mark Champkins

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.

The Historic Heart of our Information Age Gallery

Dan Green, Content Developer, reflects on the incredible story of the Rugby Tuning Coil, one of the star objects of the Science Museum’s brand new Information Age gallery which opens in October.

The aerial inductance coil from Rugby Radio Station will soon have a new home at the Science Museum – see it being installed in the video below.

Measuring 6 metres high and resembling a series of giant spiders’ webs, this monumental coil is a powerful reminder of the invisible infrastructure which supports our desire to communicate.

Based at Rugby Radio Station, where it was housed in a huge cathedral-like room, the coil played a vital role in tuning a huge radio transmitter that sent out very low frequency signals. It was part of a huge system that linked the transmitter to the aerial masts, enabling messages to be sent and telegrams to be transmitted. During its long life, Rugby Radio held a huge personal resonance for many individuals, connecting people to each other, to the world and to home.

The enormous Rugby Tuning Coil being installed inside the Information Age gallery. Image credits: Science Museum

The enormous Rugby Tuning Coil being installed inside the Information Age gallery. Image credits: Science Museum

Rugby Radio Station began transmitting very low frequency signals on 1 January 1926 using the call sign GBR. Once the world’s most powerful radio transmitter, its very low frequency waves could follow the curvature of the Earth to travel very long distances, enabling one-way communication to Britain’s Empire. It transmitted wireless telegraph messages from the British Foreign Office, standard time signals from Greenwich, news bulletins, personal telegrams and Christmas greetings.

Although first hailed as a matter of national pride, in later years Rugby Radio Station was a hidden secret that played an important role in the Cold War, as its very low frequency signals could be picked up by submarines.

Archive image of the Rugby Tuning Coil. Image credits: Cable & Wireless Communications 2014.  By kind permission of the Telegraph Museum Porthcurno.

Archive image of the Rugby Tuning Coil. Image credits: Cable & Wireless Communications 2014. By kind permission of the Telegraph Museum Porthcurno.

Godfery Dykes, one of many submarine communication operators, sat in a claustrophobic communications cabin, hunched over the radio, headphones on, sick bucket between his legs, receiving the Morse code signals. His role was to write down in pencil the dots and dashes coming through at the incredible speed of 30 words a minute, a rate that was undecipherable to the untrained ear. The dots and dashes would then be decoded and the messages delivered:

‘GBR meant a lot to us and we used the letters GBR in many ways. At the start of our patrol I used to think Goodbye BeRyl (my wife) …simply to hear Rugby’s call sign meant to me all those I loved back in the UK were still safe. I well remember moments of excitement on coming shallow to periscope depth after many hours down deep, watching the depth gauge creep slowly past 150 feet, 125, feet, 100 feet and then 75 feet, faint at first, that most lovely sound started to fill my ears – God Bless Rugby, GBR’

On 31 March 2003, 77 years after it transmitted its first Morse message, Rugby Radio station ceased broadcasting its very low frequency signals around the world. A year later, the twelve 250m high masts that radiated out Rugby’s signals were demolished, marking the end of an era. Former station manager Malcolm Hancock was invited to detonate the first explosion:

 “They had been there for so long and the red lights (on top of the masts) had always been there whenever you came home. That is what all the local people in Rugby say, ‘Oh yeah, the thing we’re going to miss is not seeing the red lights saying – oh we’re nearly home now’”.

The coil was donated to the Science Museum by BT Heritage and Archives soon after the decommissioning of Rugby Radio Station. From 25 October, you can see the Rugby Tuning Coil displayed in public for the first time at the centre of the Information Age gallery, as reflected in this artist’s impression.

An artist's impression of the Information Age gallery. Image credits: Science Museum / Universal Design Studio

An artist’s impression of the Information Age gallery. Image credits: Science Museum / Universal Design Studio

To discover more visit sciencemuseum.org.uk/informationage or follow the conversation online via #smInfoAge