Author Archives: harry

Happy New Year (of Light)!

150 years ago, James Clerk Maxwell published his work on light, electricity and magnetism. Our resident physicist, Dr. Harry Cliff, reflects on how Maxwell helped transform the way we live.

Whether you were up with the lark this morning to greet the dawn of the New Year or crawled bleary-eyed from bed after an over-exuberant farewell to 2014, it’s likely that one of the first things you did was to switch on a light or throw open the curtains.

An appropriate way to start what UNESCO has proclaimed as the International Year of Light, a 365-day celebration of light science and technologies, inspired by a number of major scientific anniversaries that fall this year.

It was 150 years ago that one of the most important scientific articles of the 19th century was published in the Philosophical Transactions of the Royal Society. Written by the Scottish physicist James Clerk Maxwell, it was titled A Dynamical Theory of the Electromagnetic Field, and its contents were to profoundly alter the way we think about light, electricity and magnetism and transform the way we live.

A facsimile of Maxwell's 'A Dynamical Theory of the Electromagnetic Field' on display in the Science Museum’s new Information Age gallery.

A facsimile of Maxwell’s ‘A Dynamical Theory of the Electromagnetic Field’ on display in the Science Museum’s Information Age gallery.

Maxwell had been grappling with the relationship between electricity and magnetism for a number of years, in particular with a very old and thorny problem: how is it that when I hold a magnet some distance away from a piece of iron, the iron is moved without actually touching the magnet?

This so called ‘action at a distance’ was troubling in a mechanical age when scientists were trying to describe all forces in terms of direct physical contact between physical entities. In Maxwell’s previous work on electromagnetism, he had made an attempt to explain action at a distance using the commonly-accepted existence of an all-pervading invisible fluid, the luminiferous aether, full of spinning vortices that transmitted electrical and magnetic forces.

Maxwell’s great breakthrough in his new paper came from his decision to try to describe electricity and magnetism without worrying very much about the details of what the aether was like. Instead he introduced the concept of the electromagnetic ‘field’, which in his words:

    “is that part of space which contains and surrounds bodies in electric or magnetic conditions.”

In other words, the electromagnetic field described the force that would be experienced by an electric charge or magnet when placed close to another charge or magnet. A common experiment at school is to visualise the magnetic field around a bar magnet by sprinkling it with iron filings.

Iron filings showing the magnetic field lines produced by a bar magnet. Source: Newton Henry Black, Harvey N. Davis (1913) Practical Physics, The MacMillan Co., USA, p. 242, fig. 200.

Iron filings showing the magnetic field lines produced by a bar magnet. Source: Newton Henry Black, Harvey N. Davis (1913) Practical Physics, The MacMillan Co., USA, p. 242, fig. 200.

However, whereas today physicists consider the electromagnetic field to have existence in its own right, Maxwell still thought of it as an effect of the arrangement of some underlying physical luminferous aether.

Armed with his electromagnetic field concept, Maxwell derived twenty equations that could be used to describe almost any electromagnetic system, and made plain the deep connections between electricity and magnetism. He then applied his equations to describe undulations or waves travelling through the electromagnetic field. His goal was nothing short of explaining the nature of light itself.

James Clerk Maxwell and his wife, Katherine in 1869.

James Clerk Maxwell and his wife, Katherine in 1869.

What Maxwell found was to change the course of science and technology forever. He derived an equation that described a wave of oscillating electric and magnetic fields; little ripples in the electromagnetic field that could even travel through empty space. Calculating the speed with which these ripples would travel, Maxwell found that it agreed precisely with the best measurement of the speed of light. Maxwell concluded:

“The agreement of the results seems to show that light and magnetism are affectations of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws.”

This was a stunning result, but it would take time for Maxwell’s theory to become widely accepted. The mathematics were so unfamiliar that most physicists were unable to understand, let alone appreciate Maxwell’s work. In 1879 a prize was offered by the Prussian Academy of Science for anyone able to provide experimental verification of Maxwell’s theory.

Experimental support for the theory would not arrive until after Maxwell’s death in 1879 at the age of just 48. In a series of experiments conducted between 1886 and 1888, Heinrich Hertz demonstrated the transmission of electromagnetic waves, proving Maxwell right and opening up a new technological age, one in which electromagnetic signals could be beamed across the planet, radically shrinking the size of the world and allowing communication at a distance never before imagined.

Replica of a set of Knochenhauer spirals used in what proved to be the starting point of Hertz's work on electromagnetic waves. See the spirals on display in the Science Museum’s Information Age gallery. Image: Science Museum

Replica of a set of Knochenhauer spirals used in what proved to be the starting point of Hertz’s work on electromagnetic waves. See the spirals on display in the Science Museum’s Information Age gallery. Image: Science Museum

Although Maxwell never lived to see the full impact of his work, those who followed in his footsteps transformed the scientific landscape. It was Maxwell’s wave equation that inspired Einstein’s theory of special relativity, which did away with the lumineferous aether and recast the very notions of space and time. Einstein himself kept a framed photograph of Maxwell on the wall of his office, and Maxwell is now widely regarded as one of the greatest physicists to have ever lived, second perhaps only to Isaac Newton and Einstein himself.

I will leave the final word to the 20th century quantum physicist Richard Feynman:

“From a long view of the history of the world—seen from, say, ten thousand years from now—there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electromagnetism. The American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same decade.”

Find out more about how Maxwell’s work opened up a new age of telecommunication in the Science Museum’s new Information Age Gallery.

The Echo of Creation – Astronomers Hear the B of the Big Bang

Dr. Harry Cliff, Curator of our Collider exhibition and the first Science Museum Fellow of Modern Science explores one of the most important discoveries of a generation.

In what has been hailed as one of the most important discoveries of a generation, astronomers working on the BICEP2 telescope at the South Pole have announced that they have detected gravitational tremors from the birth of our Universe imprinted across the sky. The result is the first direct evidence for inflation, the theory that the Universe expanded unimaginably fast, an infinitesimal instant after time zero.

The BICEP2 telescope at the Amundsen-Scott South Pole station.

The BICEP2 telescope at the Amundsen-Scott South Pole station. Credit: BICEP2

The theory of inflation states that the Universe grew in volume by about a factor of at least 1078, a number so vast that it’s impossible to comprehend (its roughly equal to the number of atoms in the universe). This phenomenal expansion took place in an incredibly short time, in about ten billionths of a trillionth of a trillionth of a second, at a time when the Universe was cold, dark and empty. To put this in context, if the full stop at the end of this sentence were to grow by the same factor, it would end up about a hundred times larger than our galaxy.

Inflation is a crucial part of modern cosmological theories and solves many serious problems with the traditional Big Bang model, but so far there has been no direct evidence that it actually happened. However, inflationary theories predict that this violent expansion would have created ripples in space and time known as gravitational waves. These ripples would then have echoed through the cosmos, leaving a mark on the oldest light in the Universe, the Cosmic Microwave Background (CMB).

Discovered fifty years ago by the American radio astronomers Arno Penzias and Robert Wilson (who at first mistook it for pigeon poo in their receiver), the CMB is the remnant of the light emitted 380,000 years after the Big Bang, when the Universe cooled enough for atoms to form and for light to travel freely across space. The discovery of the CMB was one of the most important events in the history of science, providing convincing evidence that the Universe began in a violent hot expansion known as the Big Bang. This ancient light has been stretched from a searing hot 3000 Kelvin to a freezing 2.7 Kelvin by the expansion of space, leaving it as a faint microwave signal coming from the entire sky.

The BICEP2 telescope is based at the Amundsen-Scott station at the geographic South Pole, where temperatures plummet to below minus 70 degrees Celsius in the Antarctic winter and the base is buffeted by blizzards and gale force winds. Despite these incredibly hostile conditions, the BICEP2 telescope is in the perfect location to study the CMB.

The South Pole is around 3000 metres above sea level, and the driest place on Earth, meaning that there is relatively little atmospheric water vapour that would otherwise screen out the CMB signal. This comes with the added advantage that BICEP2 is able to scan the same small piece of sky all year round, by effectively looking straight down from the bottom of the planet to the point known as the celestial south pole.

BICEP2 astronomers spent almost three years scanning the CMB in incredible detail, but yesterday the freezing conditions and hard work paid off spectacularly as they revealed subtle twists in the CMB, a smoking gun for gravitational waves from inflation. In fact, the BICEP2 astronomers were surprised by just how strong the signal was. “This has been like looking for a needle in a haystack, but instead we found a crowbar,” said co-leader Clem Pryke.

Twists in the cosmic microwave background that provide evidence for inflation

Twists in the cosmic microwave background that provide evidence for inflation. Credit BICEP2

Although the result hasn’t been peer reviewed or published in a scientific journal yet, most astronomers agree that the findings look solid. The fifty-strong BICEP2 team have been sitting on their historic result since the end of 2012, and have spent more than a year checking and rechecking to ensure they have taken account of every possible effect, from gravitational lensing to space dust, which might have given a false result.

So what does this mean for our understanding of our Universe? The BICEP2 result is really three Nobel Prize-worthy discoveries in one. They have found the first convincing evidence that inflation really happened, giving science its first glimpse of the moment in which the universe came into being. Second, they have found the strongest evidence yet for gravitational waves, the last prediction of Einstein’s theory of general relativity to be verified, and something that astronomers have been searching for for decades. Third, and by no means least, this discovery demonstrates a deep connection between quantum mechanics and gravity, giving hope that we may one day find evidence of a theory of everything, a theory that would unite our theory of particles and forces with our theory of cosmology and gravity. This would undoubtedly be the greatest prize in science.

If confirmed by other observatories, this incredible result will go down in history as one of the most important scientific discoveries of the 21st century, eclipsing even CERN’s discovery of the Higgs boson in 2012. Nobel Prizes will almost certainly follow. More importantly, this result opens up a new window through which astronomers and cosmologists may, for the first time, glimpse the very moment of creation.

Explore more about astronomy in our Cosmos and Culture gallery and discover the mysteries of deep space in our Hidden Universe 3D IMAX film.

Designing Collider

We sat down with Pippa Nissen from Nissen Richards Studio to talk about her team’s work on our Collider exhibition.

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Can you tell our readers a little about NISSEN RICHARDS studio and the kinds of projects you work on?

We are a bit unusual as a design practice as we work in different sectors; architecture, theatre and exhibition. We love the way that they have slightly different rhythms and processes that all feed on each other. Exhibition design sits nicely between architecture and theatre; it’s about the space and form of different spaces (architecture), but ultimately is about a visitor experience in a timeline across these (theatre).

You went out to CERN several times for the Collider exhibition, what was your impression of the place?

We were completely bowled over by CERN – it was extraordinary as well as full of the ordinary. The sheer size and aesthetic was beautiful – both above ground and below. In the corridors and the warehouses that you arrive in – it felt as if everything was frozen in time from somewhere around 1970 with an austere and functional Swiss graphic language thrown in.

Below ground was like a science fiction film, or being in a giant Ferrari engine – stunningly beautiful and utterly functional.

We also loved the fact that people led normal lives that went on while they were working on such mind-blowing things; and how these clashed unexpectedly. One scientist for example had his kitchen organised so that he could still see the operational screens of CERN – so he could be eating breakfast, helping his children with their homework and watching a collision happening.

The humanness of the spaces also shone through – funny posters about the CERN lifestyle (dancing and singing clubs etc) or jokes pinned up next to an equation and technical drawing of the tunnel – how CERN was filled by thousands of people doing their job – all contributing to something cutting edge and important.

We were particularly taken for example by a scribbled note on a wipe board in the control room saying ‘Don’t forget to reset the undulators!’ next to a comic-book style joke cut out from a magazine about scientists.

What approach did you take in the exhibition design?

We had this amazing experience at CERN, being shown around by extraordinary scientists that were passionate about their work but incredibly friendly and clear in their explanations.

We had a real sense of this being a place where everyone was involved for the good of it all – at the forefront of science – like travelling in space, not knowing exactly what they were about to discover, which was incredibly exciting.

It was full of different people, of different nationalities, with conversations moving freely from English to French to Italian etc. It felt like a truly collaborative and non-hierarchical place.

That is what we wanted to capture – and we decided to base the experience for the visitor to the museum on the same idea – as if you were gaining access to these wonderful people and spaces that few get to see.

Early drawings of the Collider exhibition

Early drawings of the Collider exhibition

As a piece of design, I really enjoy the spatial rhythm of the exhibition; it takes you around the exhibition and helps you in what to look at, giving you clues and gestures, how spaces vary and change as you go through.

Exploring the corridors of CERN, Collider exhibition.

Exploring the corridors of CERN, Collider exhibition. Credit: Science Museum

I also love the graphic language developed by both Finn Ross the video designer (see more of Finn’s photos from his visit to CERN here), and Northover & Brown the 2D designers, which supplements our designs – adding a level of detail in a bold and photographic but abstract way: how the beam of the Collider becomes a character in your journey as a visitor.

There was a very diverse team working on Collider, including people from the worlds of theatre, design, museums and science. What was the development process like?

The “diverse-ness” of the team was hugely enjoyable but also a great challenge. If everyone in the team had been in one room, it could have been quite overwhelming.

There were video designers, lighting designer, sound designer, playwright, costume designers, and actors and there were also other consultants such as graphic designers, conservators, security experts, quantity surveyors, project managers, and of course the scientists and people from CERN.

To find a clear voice we decided to work through workshops; something that we have done before especially in the theatre where we work with many different artists.

This was a very enjoyable process – we would all be together in a room, brainstorm and slowly plot out the visitors’ journey as if we were making a film. We used flipcharts, models, photos, text, films etc that we pinned all round the rooms of various parts of the Science Museum.

Are there any particular highlights during the design process that stand out?

There are so many wonderful moments. But to pick a few; setting up a green screen in the Science Museum while Brian Cox made his cameo; going to the stunning underground spaces of the detectors and filming; and workshop-ing with our playwright and actors in a small rehearsal space in Whitechapel. We all realised that we were creating something quite special.

What has the reaction to the exhibition been?

The day after the exhibition opened we were on tenterhooks and rather perfectly, the Independent Newspaper ran a front-page story with a large picture of Peter Higgs with the headline “Intelligent design: ‘God Particle’ theorist opens sublime exhibition”.

Peter Higgs at the launch of the Collider exhibition.

Peter Higgs at the launch of the Collider exhibition. Credit: Science Museum

I went straight from the newsagent to the framers and now it has pride of place in our studio. The reaction from the press has been very positive with 5* reviews.

But our greatest praise is from visitors who say that they feel as if they have taken a trip to CERN, and understand both what the people are like, and a bit more about the science behind it.

Are there any other exhibitions/projects that inspired your work on Collider?

It is interesting that the work we talked about the most when making Collider – were theatre projects that we had worked on or we had visited. Ones where the audience moves around between events and their journey is tailored and twisted by using actors, musicians, video, props, and installations.

We have worked on a couple of these kinds of projects for Aldeburgh Festival. On “The Way to the Sea” we took over a village in Suffolk for a week, and staged two musical performances in different locations, while a 500 strong audience walked between locations coming across signs, poetry, actors, props, speakers, and installations.

My most memorable type of exhibition event that sticks in my mind and inspired me to study theatre design in the first place is over 20 years ago in the Clink (before it was developed). The artist Robert Wilson worked with a sound designer to create a series of stories that you wandered through as a visitor, each like exquisite tableau.

There were a series of these kind of events in the late 80’s early 90’s and I spent my student years assisting Hildegard Bechtler on a few of her pioneering projects, where she took over buildings to subvert the theatre and create more of a total experience for the audience from the moment they entered the theatre building. It is tremendously exciting to use this in exhibition design years later.

Do you think that the mixture of theatre and exhibition works?

I think that it really works, and for me it is about helping the visitor engage with the content of exhibitions. In a theatrical setting people can have an emotional sensorial connection – through sound, smell, touch – and once engaged they can spend time to understand and interpret the meaning of the objects or artefacts.

I feel that there is a lot of scope in this – and exhibitions are becoming different to what they used to be. It is now not enough to put some objects in a showcase and write a label – I learn from my own children that they often feel like they need a way in when visiting museums.

Ultimately it is all about the objects as they are the authentic elements. However we can help with giving them meaning through designing people’s experience.

We will continue to use elements of theatre in our work, and enjoy the relationship between what is real with its own set of history, and what we are adding to allow you in.

The Collider exhibition runs at the Science Museum until 5 May 2014 (tickets can be booked here). The exhibition will then open at the Museum of Science and Industry in Manchester from May 23 – September 28 2014 (tickets available soon here).