Author Archives: Will Stanley, Science Museum Press Officer

Living in a materials world – the human story of rubbish

In this week’s blog linked to The Rubbish Collection, Curator Sarah Harvey follows some of the unexpected stories and personal objects that were found in the Museum’s bins. As the exhibition nears its end, what will happen to all this ‘rubbish’ afterwards?

Much of the feedback I have received about Joshua Sofaer’s The Rubbish Collection, from both visitors and staff, has been about the surprising personal items and stories that have come out of the bins. When we were first carrying out trials for the project it was one of the unexpected outcomes of the documentation process. This revelation, that sorting through waste was like a form of contemporary archaeology, inspired Joshua to invite the public to take part in the documentation process so that visitors also had the chance to experience the wonder of piecing together those narratives.

Lunchbox notes on display in Phase 2 of The Rubbish Collection © Katherine Leedale

Lunchbox notes on display in Phase 2 of The Rubbish Collection © Katherine Leedale

The stories we found in the bins ranged from the very general (like what the favourite crisp brand amongst visiting schoolchildren was) to more Museum-specific (like which new galleries were under development and which events had taken place). Even the volume told us how busy the Museum had been on a given day. There were also very personal stories such as notes put into someone’s lunchbox by their partner, a surprising number of medicines, and children’s drawings of their day out. In a painfully frank teenage love note, the author proclaims that they are not worth the attention of their crush and recommends they should go out with someone else. We even found a pregnancy test (negative; was its user disappointed, happy or relieved by that result? We’ll never know).

Pregnancy test on display in Phase 2 of The Rubbish Collection © Katherine Leedale

Pregnancy test on display in Phase 2 of The Rubbish Collection © Katherine Leedale

We don’t often think about our rubbish, full stop, let alone consider it as a personal document of our lives. Archaeologists have long been aware of this when piecing together a picture of the lifestyles and living conditions of people’s past, as have the paparazzi in finding out private information about celebrities and public figures. Looking at the landfill of the last few decades, I imagine, will tell a story of the rise of plastics and packaging, the dominance of certain supermarkets and brands, the affordability of electrical goods, our increasingly global markets and the enormous growth in waste generally. Hopefully, as with the Science Museum’s bins, an examination of more recent landfill should document a more positive change, that of recycling and our increased awareness of the value that materials still hold. The next step may be mining our municipal dumps to try to recover some of those precious materials that are now scarce in the natural world, such as the rare earth metals that are so important in the manufacture of electronic goods.

Electrical goods on display in Phase 2 of The Rubbish Collection © Katherine Leedale

Electrical goods on display in Phase 2 of The Rubbish Collection © Katherine Leedale

And what will become of all the rubbish and materials on display in The Rubbish Collection? Well, the materials, like the paper reels, plastic pellets, metals and fertilizer, will be returned to the companies that lent them to us, to continue on their recycling journey to become new products.  Electrical goods will be sent to specialist recycling companies to separate any reusable parts and recycle what cannot be salvaged. The items that we retained from the rubbish bags, though many would have originally gone to incineration if we had not intervened in their journey, will be recycled wherever possible. Medicines will be taken to a pharmacy for safe disposal, usable stationary will be returned to offices and the 16.5 pairs of shoes, 2 suits and other items of clothing will be taken to charity shops.

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.

Going down the drain

In the latest of our blogs linked to The Rubbish Collection, Curator Sarah Harvey talks to Nick Mills, Waste Innovation Manager at Thames Water about what happens to our sewage and what the future holds for wastewater.

Sarah: What do Thames Water do with our sewage?

Nick: We have 350 sewage works and 68,000 miles of sewers across our region, which stretches from East London to the Cotswolds in the west. Last year, we removed and treated 4,369 million litres of sewage from 15 million customers. At our 350 sewage works we treat the sewage to remove contaminants and return it safely to the environment, it is often cleaner than the water in the river.

Sarah: What happens to the end products of the processing?

Nick: The main end-product of the sewage treatment process is something called sludge. This energy rich by-product is put to good use in anaerobic digestion, producing renewable energy that helps power our treatment sites. The digested sludge is then recycled to agricultural land.

Sludge having been put through a Bucher press to reduce liquid content © Thames Water

Sludge having been put through a Bucher press to reduce liquid content © Thames Water

Sarah: What are the biggest challenges you face in dealing with our sewage/ waste water?

Nick: London has outgrown its sewer system. The Victorian sewers are in great condition, but simply not designed for today’s population. They were designed for just over two million but are used today by just over six million. The proposed Thames Tideway Tunnel will stop tens of millions of tonnes of raw sewage flowing into the Thames every year via the outfall system. It is a must-do job. We can’t keep treating the Thames as a sewer.

The Lee Tunnel © Thames Water

The Lee Tunnel © Thames Water

Sarah: What are the strangest or most difficult things to deal with that people throw down the drains?

Nick: ‘Bin it – don’t block it’ is our campaign to end the misery caused by fatbergs. Leftover cooking fat and oil poured down the sink will set hard. This creates stinking, pipe-blocking fatbergs beneath your house or in your street.

A sewer flusher in London digging out a fatberg © Thames Water

A sewer flusher in London digging out a fatberg © Thames Water

Wet wipes are another big no-no because they are made of plastic. They don’t break down like toilet tissue, clinging to fat and clogging up the system. If drains get blocked, what you flush can come back up through your toilet or even your sink.

Sarah: What can consumers and organisations do better?  Is there a top 3 list of things people could do differently to help?

Nick: Our message is simple, if it’s not water, toilet tissue or poo, please… ‘Bin it – don’t block it’.

Sarah: What do you think the industry will be like in 20 years’ time? What are the new innovations and technologies that you are exploring at the moment?

Nick: In 20 years’ time I can see the wastewater industry becoming a net energy producer, by employing more efficient processes and increasing energy recovery. Combining advanced anaerobic digestion and technologies like pyrolysis, large increases can be made. Our Innovation team are busy demonstrating this at the moment. Phosphorus, a finite resource essential to life as we know it, will be recovered at every major sewage works and sold competitively as a fertiliser to farmers, this has also been demonstrated recently at our Slough sewage works by the Innovation team.

Innovation works at Slough © Thames Water

Slough sewage works © Thames Water

Sarah: What did you think when you first heard about Joshua Sofaer’s The Rubbish Collection project?

Nick: I think it is great. It shows the harsh reality of waste, but at the same time reveals the great work that people do behind the scenes to keep society moving. I hope it will encourage a new generation to start what is a very interesting and rewarding career as there are huge challenges yet to be solved.

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.

Roaming Far and Wide – the Science Museum in China

Outreach Officers Ronan Bullock, Aasiya Hassan and Susie Glover report back after their outreach trip to Hong Kong and China.

In March 2014, the Science Museum’s Outreach team was invited for the second time by The British Council in Hong Kong to deliver a series of shows and workshops as part of their Science Alive Festival. The theme of this year’s festival was ‘The Code of Life’ and we disgusted audiences with blood, guts and snot, exploring the science behind the human digestive system, blood and materials. We spent three days with our hosts at the Hong Kong Science Museum and a further nine days visiting twenty two schools across Hong Kong and New Territories. We experienced many different educational settings from government funded local schools to private international schools reached a combined audience of over 7,000!

Proving that no distance is too great for the Outreach team, we then caught a train to Dongguan City in mainland China to deliver events hosted by The Dongguan Science & Technology Museum. Over the course of four days we engaged with audiences at the museum and two local schools, reaching over 3,000 people. This visit continued our relationship with the museum, having hosted a number of free science shows performed by their staff right here in London, in the Science Museum, back in September 2013.

During our busy schedule we found time to sample some of the interesting local cuisines, tour both museums and see some local sites, the highlight of which was taking a cable car to see Hong Kong’s famous giant Tian Tian Buddha.

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. The foreground is littered with flattened rocks and the horizon is just visible at the tops of the top corners. Credit: NSSDC Photo Library

How to land on Venus

On the anniversary of Venera 7’s launch – the first spacecraft to successfully land on Venus – curator Doug Millard reflects on the challenge of exploring other worlds.

Over a 20-year period from the mid-1960s, Soviet scientists and engineers conducted one of the most successful interplanetary exploration programmes ever.

They launched a flotilla of spacecraft far beyond Earth and its Moon. Some failed, but others set a remarkable record of space firsts: first spacecraft to impact another planet, first controlled landing on another planet and the first photographs from its surface. The planet in question was not Mars – it was Venus.

Our knowledge of Venus at the time had been patchy. But as the Soviet probes journeyed down through the Venusian atmosphere it became clear that this planet – named after the Roman goddess of love – was a supremely hostile world. The spacecraft were named Venera (Russian for Venus) and the early probes succumbed to the planet’s immense atmospheric pressure, crushed and distorted as if made of paper.

Venera 3 did make it to the surface – the first craft ever to do so – but was dead by the time it impacted, destroyed by the weight of the air. Venera 4 was also shattered on the way down, but it survived long enough to return the first data from within another planet’s atmosphere. The engineers realised, though, they would have to reinforce still further the spacecraft’s titanium structures and silica-based heat shield.

The information coming in from the Venera probes was supplemented with readings from American spacecraft and ground-based observatories on Earth. Each added to an emerging picture of a hellish planet with temperatures of over 400 °C on the surface and an atmospheric pressure at ground level 90 times greater than Earth’s.

Spacecraft can only be launched towards Venus during a ‘window of opportunity’ that lasts a few days every 19 months. Only then do Earth and Venus’ relative positions in the Solar System allow for a viable mission. The Soviets therefore usually launched a pair of spacecraft at each opportunity. Venera 5 and 6 were launched on 5 and 19 January 1969, both arriving at Venus four months later.

There had not been time to strengthen these spacecraft against the unforgiving atmosphere, so instead the mission designers modified their parachutes so that they would descend faster and reach lower altitudes, sending back new data before their inevitable destruction.

Venera 7 descent module, (engineering model, scale 1;1), 1970  This descent module with parachute lanyards clearly visible was used for drop tests on Earth in 1970

This Venera 7 descent module (engineering model) with parachute lanyards clearly visible, was used for drop tests on Earth in 1970. Credit: Lavochkin Association/Photo: State Museum and Exhibition center, ROSIZO

Launched on 17 August 1970, Venera 7 made it intact to the surface of Venus on 15 December 1970 – the first probe ever to soft land on another planet. Its instruments measured a temperature of 465 °C on the ground. It continued to transmit for 23 minutes before its batteries were exhausted.

Venera 8 carried more scientific instruments which revealed that it had landed in sunlight. It survived for another 50 minutes. Venera 9, the first of a far stronger spacecraft design, touched down on 22 October 1975 and returned the first pictures from the surface of another planet. It too showed sunny conditions – comparable, the scientists reckoned, to a Moscow day in June.

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. The foreground is littered with flattened rocks and the horizon is just visible at the tops of the top corners. Credit: NSSDC Photo Library

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. Credit: NSSDC Photo Library

The surface was shown to be mostly level and made up of flat, irregularly shaped rocks. The camera could see clearly to the horizon – there was no dust in the atmosphere, but its thickness refracted the light, playing tricks and making the horizon appear nearer than it actually was. The clouds were high – about 50 km overhead.

The Soviet Union now had a winning spacecraft design that could withstand the worst that Venus could do. More missions followed, but then in the early 1980s the designers started making plans for the most challenging interplanetary mission ever attempted.

This photograph was taken by the Venera 13 camera using colour filters. It shows the serrated edge of the Venera 13 decent module gripping the soil on the rocky surface of Venus.  Credit: NASA History Office

This photograph was taken by the Venera 13 camera using colour filters. It shows the serrated edge of the Venera 13 decent module gripping the soil on the rocky surface of Venus.
Credit: NASA History Office

Scientists around the world were keen to send spacecraft to Halley’s Comet, which was returning to ‘our’ part of the Solar System on its 75-year orbit of the Sun. America, Europe and Japan all launched missions, but the Soviets’ pair of Vega spacecraft were the most ambitious, combining as they did a sequence of astonishing manoeuvres, first at Venus and then at Halley’s Comet.

Both craft were international in their own right, with many nations contributing to their array of scientific instruments. They arrived at Venus in June 1985.

Each released a descent probe into the Venusian atmosphere. Part of it released a lander that parachuted down to the surface while the other part deployed a balloon, with a package of scientific instruments suspended underneath that first dropped and then rose through the atmosphere to be carried around the planet by winds blowing at well over 200 miles per hour.

Meanwhile, the main part of each Vega spacecraft continued on past Venus, using the planet’s gravity to slingshot itself towards an encounter with Halley.

A little under a year later both arrived a few million kilometres distant from the comet. Both were battered and damaged by its dust, but their instruments and cameras returned plenty of information on the ancient, icy and primordial heavenly body.

A golden age of Russian planetary exploration had come to an end.

Russia plans to return to Venus, but meanwhile its Vega spacecraft, their instruments long dead, continue to patrol the outer reaches of the Solar System, relics of the nation’s pioneering days of space exploration.

Discover the dramatic history of the Russian space programme in our upcoming exhibition, Cosmonauts: Birth of the Space Age.

Shedding light on the matter of rubbish

In the latest of our blog series linked to The Rubbish Collection, the Science Museum’s Inventor in Residence Mark Champkins finds an ingenious use for our discarded materials.

The second phase of The Rubbish Collection exhibition is open at the Museum until 14 September. Having documented every piece of waste that passed through the Museum for a month, this second phase is a chance to see what would have been thrown away.

Of the material that hasn’t been selected for display, I collected a small box of bits that I hoped to turn into a product that we might sell in the shop. I like the idea that with a little bit of effort and imagination, items that would otherwise be chucked, can be turned into something desirable. Unfortunately the collection of items in the box that I had gathered didn’t look at all desirable. A couple of umbrellas, some bits from a light fitting, an old copper funnel, an ash tray, some plastic cutlery, some glass cups and a selection of ball bearings didn’t look very promising.

A box of bits © Mark Champkins

A box of bits © Mark Champkins

The germ of my idea came from digging out the copper funnel and investigating it further. It was heavily corroded and covered in green verdigris, but underneath was structurally solid, and a beautiful shape.

I read somewhere that vinegar could be used to clean copper, so I popped down to the café, to get a couple of sachets to try out. It turns out it does a reasonable job on lightly tarnished areas, but can’t handle the extent of corrosion on the funnel. However, it did encourage me that the funnel could be saved.

An old copper funnel © Mark Champkins

An old copper funnel © Mark Champkins

Next I pulled apart the umbrellas, lined up everything from the box and had a think what I might make. A happy coincidence was that the handle from the umbrella fitted exactly into the top of the funnel.

 

An umbrella handle © Mark Champkins

An umbrella handle © Mark Champkins

My first thought was to make some sort of loudspeaker people could shout through. Next, I thought the umbrella handle might plug the funnel to make a water-tight vase or container of some sort. Finally, looking at the shining clean patch of copper I thought, coupled with a 1950s-style squirrel cage bulb, it might make a really nice light fitting.

The next step was to recondition the copper funnel. In the basement, the Museum has metal and wood workshops responsible for building, installing and maintaining the structures for new exhibitions. Amongst their equipment is a sandblasting machine, which I used to blast the corrosion from the funnel.

Sandblasting the copper funnel © Mark Champkins

Sandblasting the copper funnel © Mark Champkins

I decided to leave the matt finish left from the sand blasting on the inside surface, and polish up the outside. Using Brasso and eventually a buffing wheel I polished up the outer surface.

Polishing © Mark Champkins

Polishing © Mark Champkins

Using a buffing wheel © Mark Champkins

Using a buffing wheel © Mark Champkins

To ensure the lamp remains pristine, I decided to use a polymer based lacquer, applied in the workshop’s spray booth.

In the spray booth © Mark Champkins

Finally I added the umbrella handle, and a lighting flex and fitting. I think the finished light looks rather good. It’ll be available for purchase in the Museum shop from mid August.

The finished light © Mark Champkins

The finished light © Mark Champkins

The lamp made from Museum rubbish © Mark Champkins

The lamp made from Museum rubbish © Mark Champkins

The finished lamp at work © Mark Champkins

The finished lamp at work © Mark Champkins

The light will be on sale in the Museum shop in mid-August © Mark Champkins

The light will be on sale in the Museum shop in mid-August © Mark Champkins

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.

An Antarctic Expedition

Assistant Curator Sarah Harvey looks back at Sir Ernest Shackleton’s Antarctic expedition, which launched a century ago today.  

On this day (8 August) 100 years ago, a ship called the Endurance set sail from Plymouth, bound for Antarctica. The ship carried Sir Ernest Shackleton’s Imperial Trans-Antarctic Expedition, the goal of which was to make the first transcontinental crossing of Antarctica through the South Pole, from the Weddell Sea to the Ross Sea.

HMS Endurance trapped in the ice during Shackleton's 1914-16 Antarctic expedition © BFI National Archive

HMS Endurance trapped in the ice during Shackleton’s 1914-16 Antarctic expedition © BFI National Archive

The expedition failed when Endurance became trapped in pack ice and, after 9 months, was eventually crushed and sank, stranding Shackleton and the crew on the ice. Despite this failure the trip became famous as an epic feat of endurance, as Shackleton and his crew made a desperate and heroic bid for escape in three tiny boats, crossing the Southern Ocean to the island of South Georgia. Sadly, three lives were still lost: Victor Hayward, Aeneas Mackintosh and the Rev. Arnold Spencer-Smith from the Endurance’s supply ship the Aurora.

Two medicine chests, belonging to polar explorer Ernest Shackleton, (1871-1922) and Captain Robert Falcon Scott (1868-1912).

Two medicine chests, belonging to polar explorer Ernest Shackleton, (1871-1922) and Captain Robert Falcon Scott (1868-1912). Credit: Science Museum.

It was the last great expedition of what is known as the heroic age of Antarctic exploration, and for 100 years has provided inspiration for both explorers and artists alike, including author Tony White whose thought provoking and innovative latest novel, Shackleton’s Man Goes South, is the first novel ever to be published by the Science Museum. More information about Shackleton’s expedition and the novel, which is available as a free e-book until April 2015, can be found in the Science Museum’s Atmosphere gallery.

Drawing on tales of adventure from the past and cutting-edge new scientific research into the effects of climate change, White imagines a terrifying future where people are fleeing to Antarctica, instead of escaping from it; in a hot world instead of a cold one.

The author says that he became fascinated not only by Shackleton’s amazing feat of heroism, but the way that the story has been told. “I wondered what new resonances those early tales — and moving images — of Antarctica a century ago might have now when that great continent’s ice sheets are at risk because of climate change, and what kind of Shackleton myth might inspire future generations of migrants to Antarctica. Migration is being seen as a form of adaptation to climate change, and the novel suggests that climate change refugees, setting out in tiny boats on equally desperate and epic voyages, might be the Ernest Shackletons of our day.”

There are zeppelins over South Kensington and boat people in the South Atlantic. Among them are Emily and daughter Jenny, travelling south to safety and a reunion with John who has gone ahead to find work. They travel with Browning, a sailor who has already saved their lives more than once. In the slang of their post-melt world, Emily and Jenny are refugees known as ‘mangoes,’ a corruption of the saying ‘man go south’.

To find out more about the inspiration behind Shackleton’s Man Goes South and download the e-book click here or visit the Science Museum’s Atmosphere gallery.

Transforming materials – the recycling journey

In this week’s blog linked to The Rubbish Collection Curator Sarah Harvey follows the route of the Science Museum’s recycled rubbish.

Joshua Sofaer’s art installation The Rubbish Collection showcases the sometimes surprising materials that are created from the everyday rubbish produced by staff, contractors and visitors at the Science Museum. After documenting all the Museum’s waste for 30 days we have traced where it goes, and how it is recycled and transformed from rubbish back into valuable materials.

Grundon Materials Recovery Facility, Colnbrook © Science Museum

Grundon Materials Recovery Facility, Colnbrook © Science Museum

For recyclable rubbish put into the Museum’s recycling bins the first port of call in the journey is the Grundon Material Recovery Facility (MRF) at Colnbrook near Heathrow. Here it is separated out into several different recycling streams. First magnets remove the ferrous metals (like steel cans) and non-ferrous metals (such as aluminium cans) then sophisticated infra-red technology identifies and separates the remaining rubbish into paper, card, glass and several different types of plastics. Any rubbish that cannot be recycled, or pieces too small to be captured, are taken to the Lakeside Energy from Waste plant for incineration, so no rubbish goes to landfill. At the end of the sorting process the materials are baled as raw materials for resale to companies who take on the next stage of processing.

Artist Joshua Sofaer and Curator Sarah Harvey at Grundon Waste Management Facility, Colnbrook © Science Museum

Artist Joshua Sofaer and Curator Sarah Harvey at Grundon Waste Management Facility, Colnbrook © Science Museum

For each material the recycling and recovery processes are necessarily very different, but it was interesting to find that there is always a loss of some material which cannot be recovered or usefully reused. For the plastics and the glass that loss comes from paper labels and glues that are soaked off in the washing process, forming an unpleasant sticky mulch which gets sent for incineration. Even for the steel and aluminium cans which can be endlessly recycled, there is still some loss from the paints and pigments used in printing their branded logos and decoration.

Aluminium cans at Grundon Waste Management Facility, Colnbrook © Science Museum

Aluminium cans at Grundon Waste Management Facility, Colnbrook © Science Museum

As processes improve and new technology is developed, hopefully one day these materials will either be captured for future use, or the waste will be designed out altogether. The model for keeping 100% of the materials in circulation is known as the circular economy. Sometimes only a small change is needed. In the exhibition we have the plastic label and mixed flake that is retained from PET plastic recycling. By using plastic labels instead of paper the material can be more easily collected and recycled to make new products like plastic bags.

PET plastic flakes in The Rubbish Collection © Science Museum

PET plastic flakes in The Rubbish Collection © Science Museum

There is lots of information on the web about the processing of different materials. Some of the online resources I have found most helpful during this project are:

Glass
Aluminium
Steel
PET plastics
HDPE plastics

Phase 2 of Joshua Sofaer’s The Rubbish Collection is now open at the Science Museum and runs until 14 September 2014.

Rubbish that powers homes and builds roads

In this week’s blog linked to The Rubbish Collection, Curator Sarah Harvey looks at some of the materials that are on display in the exhibition.

The second phase of Joshua Sofaer’s The Rubbish Collection art installation has involved tracing the journeys of the Science Museum’s rubbish, to find out where it goes, and how it is processed. This has enabled us to work out what materials to bring back for display, and in what quantities, to represent 30 days’ worth of Science Museum waste.

A giant claw lifting general waste into the incinerator at the Energy from Waste plant © Science Museum

A giant claw lifting general waste into the incinerator at the Energy from Waste plant © Science Museum

Rubbish leaves the museum via a variety of different companies but the vast majority is taken by Grundon Waste Management. It goes to their site at Colnbrook, near Heathrow, which holds three centres; a transfer station, a Materials Recovery Facility and the Lakeside Energy from waste plant, co-owned by Viridor Waste Management.

The interior of the Lakeside Energy from Waste plant © Science Museum

The interior of the Lakeside Energy from Waste plant © Science Museum

Today I’m going to focus on the materials on display from the Energy from Waste plant. When you think of an incinerator that burns rubbish you might picture a dirty, sooty, very smelly and unpleasant place, but it’s actually an extraordinary, almost clinically clean building (except for the container where the rubbish is held), and it’s surprisingly beautiful with a giant claw grabbing up to six tonnes of rubbish at a time to feed the incinerator fires.

Inside the incinerator at the Lakeside Energy from Waste plant © Science Museum

Inside the incinerator at the Lakeside Energy from Waste plant © Science Museum

All the Science Museum general (non-recycled) waste goes to Lakeside to be incinerated. Four products come out of that process: energy, incinerator bottom ash, air pollution control residue and clean air. The largest output is energy, with the plant providing enough to power 50,000 homes per year. We have calculated that the energy produced by incinerating one month of Science Museum waste is enough to light one of our gallery bulbs for nearly 24 years.

Bottom ash aggregate and recyclable metal as it comes out of the Energy from Waste plant © Science Museum

Bottom ash aggregate and recyclable metal as it comes out of the Energy from Waste plant © Science Museum

The energy is produced by burning the rubbish for approximately 3 seconds at 950 degrees centigrade, which is long enough to combust most materials. At the end of the process, incinerator bottom ash is left over. This ash still contains large pieces of metal which are separated and sent to be recycled, and the ash itself is left to ‘mature’ so that chemical reactions can take place that lower its pH value. This aggregate is then used in the construction industry, primarily in road building. You could be driving on your old rubbish.

Bottom ash aggregate (left) on display in Phase 2 of The Rubbish Collection © Katherine Leedale

Bottom ash aggregate (left) on display in Phase 2 of The Rubbish Collection © Katherine Leedale

One of the most remarkable things about the incineration process is that the air that comes out of the plant is actually cleaner than the air that goes in. This is because it is very carefully filtered to contain the toxins released during burning. The filtered ash is known as air pollution control residue (APCr). Historically this toxic ash would have been contained in hazardous waste landfill, but new technologies and research are now finding uses for it. Grundon have invested in a company called Carbon8 who use carbon dioxide to neutralise the toxic heavy metals and materials, making them permanently non-hazardous. This safe ash can then be used as an aggregate and, alongside other recycled materials including wood, makes the ‘Carbon Buster’ carbon-neutral breeze blocks we have on display in The Rubbish Collection.

Carbon Buster breeze blocks in Phase 2 of The Rubbish Collection © Katherine Leedale

‘Carbon Buster’ breeze blocks in Phase 2 of The Rubbish Collection © Katherine Leedale

It’s been very encouraging to find that the Science Museum rubbish is producing some useful and valuable products through incineration. However, one of the big findings from our documentation of the Museum’s waste was that there is still a lot of recyclable material ending up at the incinerator. Those materials retain much more value when they are recycled so by continuing to improve and refine our recycling systems, and through new initiatives like separating our food waste, we hope in the future to decrease our general waste further.

Phase 2 of Joshua Sofaer’s The Rubbish Collection is now open at the Science Museum and runs until 14 September 2014.

Modern art is Rubbish

In the latest of our series of blogs linked to The Rubbish Collection Science Museum Inventor-in-Residence Mark Champkins looks back at Phase 1, while Project Curator Sarah Harvey gives us a sneak preview of Phase 2 before it opens on 25 July.

Phase 1 – Mark Champkins, Science Museum Inventor-in-Residence

Tuesday 15 July was the last day of sorting through Museum waste for The Rubbish Collection project, and my last chance to put in a shift filtering through discarded drinks bottles and leftover lunches.

The project is fascinating. It aims to examine what constitutes the waste that passes through the Museum, where it would normally go, and what might be usefully recycled.

The exhibition is split into two parts. The first involves the collection of every piece of waste generated by the Museum over a month. A team of volunteers has been sorting and photographing the contents of the Museum’s rubbish bags, and pulling out items of particular interest. The second part will start on 25 July, and will be an exhibition of cleaned and collated rubbish materials.

The Rubbish Collection Phase 1 © Science Museum

The Rubbish Collection Phase 1 © Science Museum

As I began my shift, what struck me first was the smell of the gallery. It’s a sweet, fruity smell, not unlike over-ripe apples. It comes from the vast amount of sugary drinks and half eaten fruit thrown into the bins, the likely source being the hundreds of packed lunches eaten in the Museum every day. Throughout the Museum, the usual bins have been replaced with ‘General Waste’ and ‘Recycling’ bins. It soon became clear to me that in order to avoid the worst of the smell, the bags to pick out to sort through are the ones marked ‘Recycling’. This avoids the majority of the decomposing foodstuffs.

The task is to open up the bags, lay out the contents on a large white table, sort the contents as you see fit, and then snap a photo of the arranged items on an overhead camera. The opportunity to arrange the rubbish in whatever way you want has brought out the creativity of the volunteers. To this end, within a few days, a tumblr account was opened to show off some of the most imaginative of the layouts. Amongst my favourites are the seascape, composed of blue plastic bags and fruit, and blazing sun in the sky, made from bread sticks, paper towels and what looks like parsley. You can have a look here.

Rubbish of the Day, day 27 © Science Museum

Rubbish of the Day, day 27 © Science Museum

After half a dozen bags, a disheartening pattern starts to emerge. Much of what is being thrown away is perfectly good. Lots of the food is unopened or untouched. Leaflets and flyers are almost always pristine. It’s as though the bins are being used to de-clutter, rather than being a place to put things when they have reached the end of their useful lives. It seems inexplicable how many of the items have ended up in the bins. Three wheelchairs have been collected, over a dozen shoes, two fridges, a bra and a giant toothbrush.

Spurred by the some of the weird and wonderful items collected I have set myself a challenge. Like a Science Museum Womble, I aim to filter through the items left behind to put together some items that can be repurposed and redesigned to make a one-off product, that we can sell in the Museum shop. Watch this space…

Some of the materials for Phase 2 of The Rubbish Collection

Some of the materials for Phase 2 of The Rubbish Collection © Science Museum

Phase 2 – Sarah Harvey, Project Curator, The Rubbish Collection

After 30 frenzied days of documenting all the Science Museum waste, you might have expected artist Joshua Sofaer to take a well-earned break. No such luck. Since the documentation finished on 15 July, The Rubbish Collection has remained a hive of activity and an almost miraculous transformation has taken place. Gone are the sorting tables, bin bags and faint whiff of old packed lunch; in their place Joshua has created an intriguing and magical exhibition showcasing 30 days of Science Museum rubbish.

The exhibition is comprised of some of the bizarre and surprising items that were retained from the bins in the documentation phase of the project, displayed alongside almost 18 tonnes of materials processed and recycled from the Science Museum rubbish. Both the scale and the beauty of these materials and objects is quite unexpected, and I don’t want to ruin the surprise, so I’m just going to give you some teaser images (below). The exhibition opens to the public at 11am on Friday 25 July, so please come down and experience the wonder of ‘rubbish’ for yourself.

Material for Phase 2 © Science Museum

Material for Phase 2 © Science Museum

Material for Phase 2 © Science Museum

Material for Phase 2 © Science Museum

 

 

 

 

 

 

 

 

Material for Phase 2 © Science Museum

Material for Phase 2 © Science Museum

Material for Phase 2 © Science Museum

Material for Phase 2 © Science Museum

 

 

 

 

 

 

 

 

Phase 2 of Joshua Sofaer’s The Rubbish Collection opens at the Science Museum on 25 July and runs until 14 September 2014.

281,647 visitors: a ‘rubbish’ story

In the next in our series of blogs about The Rubbish Collection, Project Curator Sarah Harvey looks back at what we have collected and reflects on what Phase 1 of the exhibition has taught us about our relationship with waste.

Thirty days of sorting and documenting all the Science Museum‘s rubbish have come to a close. It’s been surprising, sometimes shocking and certainly thought-provoking, fun, hard work and, at times, a little bit smelly!

We’ve documented all the rubbish produced by the Museum’s 281,647 visitors, 500+ staff and contractors, five cafés, two building sites, three shops, two Science Nights, one Lates event and several storage cupboard clearances. We’re still waiting to see the figures but, it’s safe to say, it was a lot of rubbish.

Two pairs of shoes appear in Phase 1 of The Rubbish Collection © Science Museum

Two pairs of shoes appear in Phase 1 of The Rubbish Collection © Science Museum

Over the thirty days, artist Joshua Sofaer, his assistants and the Science Museum volunteers, along with hundreds of brave visitors eager to take up this unique opportunity to get up-close and personal with the trash, have rummaged tirelessly through approximately 250 bags of rubbish per day.

Along with the expected items like crisp packets, drinks cans and the remains of thousands of kids’ lunch boxes, we’ve also found some more unexpected objects hidden amongst the detritus of everyday Museum life. 16.5 pairs of shoes, two two-piece suits, a bra, three fridges, one dishwasher, a box of old floppy disks (visiting school children didn’t know what they were), piles of discarded over-the-counter medicines, three wheelchairs and a staggering volume of disposable cutlery.

Uneaten fruit in Phase 1 of The Rubbish Collection © Science Museum

Uneaten fruit in Phase 1 of The Rubbish Collection © Science Museum

So, what have we learnt from all this investigating and documenting? Aside from the revelation that kids don’t eat the fruit in their packed lunch (one day I’ll count the number of untouched apples we documented), the most obvious thing is that we don’t recycle as much as we could.

Over the last few months the Science Museum has been working hard to put new systems in place for separating our rubbish both in public spaces and offices. The addition of recycling bins in public areas is a long overdue step forward for the Museum but we found that almost all recycling bags in public areas were contaminated with non-recyclable rubbish, so we need to do more to encourage and help visitors to recycle while they are here.

The amount of recyclable material lost to incineration because we are not yet separating café waste is a lot more than we would like but there are plans in place to roll out new segregation systems to all the Museum’s cafés in the near future. Just separating out the café food waste could reduce the Museum’s general waste tonnage by around a third.

Food waste from the Phase 1 of The Rubbish Collection © Science Museum

Food waste from the Phase 1 of The Rubbish Collection © Science Museum

Whilst the documentation was taking place in the Museum, behind the scenes we’ve been doing some detective work to find out where and how those materials are processed and what they go on to become. These days, very little is lost to landfill so most of the rubbish that left the Museum has been transformed into some other physical form, either through recycling or through incineration.

That transformed rubbish is now travelling back to the Science Museum, to be reunited with some of the most interesting items we retained from the bins. Over the next 10 days, Joshua Sofaer will be creating an exhibition showcasing what is produced from our rubbish, examining the beauty and value of the materials but also looking at the sheer volume that was produced over one month. The exhibition will open on 25 July but if you want a sneak preview before then, make sure to watch this space…

The Rubbish Collection continues with Phase 2 from 25 July to 14 September 2014.