Category Archives: Educators

Behind the ‘i.am+ foto.sosho’, launched by Will.i.am yesterday, lies his commitment to become a role model to help inspire young people to pursue science, engineering, mathematics and technology. Photo credit: Matt Writtle

Will.i.am’s quest to discover the next Bill Gates

By Roger Highfield, Director of External Affairs at the Science Museum Group.

The musician and entrepreneur will.i.am gave a classic demonstration of the ‘show, don’t tell’ technique yesterday as part of his quest to inspire the next generation of scientists and engineers.

He announced that he has led a global consortium of technologists to develop what he called a ‘social camera’, a turbocharged version of the iPhone.

Behind the ‘i.am+ foto.sosho’, launched by Will.i.am yesterday, lies his commitment to become a role model to help inspire young people to pursue science, engineering, mathematics and technology. Photo credit: Matt Writtle

At a press conference held at the Fashion Retail Academy in London, The Black Eyed Peas frontman referred to his donation of £500,000, via his i.am angel Foundation, to The Prince’s Trust to fund education, training and enterprise schemes in the UK with a focus on technology and computer skills development.

The Trust is working with Toby Parkin of the Science Museum to enable it to engage young people with science. The museum currently reaches over half a million students per year through school visits and outreach. With the Trust, the museum will focus on inner city schools where children feel socially excluded and standards have been in decline.

Will.i.am says he wants his initiative to ‘help transform the lives of disadvantaged young people living in under-privileged neighbourhoods.’ He added that he was going to learn coding next year, though he stressed ‘I want to be in the classroom as well as the club.’

When I asked him if he wanted to come to the Science Museum to pass on his skills to the hundreds of thousands of children who visit each year, he joked it would probably take him eight years to get up to speed, or become what he calls ‘the rocking-est coder.’

Will.i.am is not alone in embracing geek chic. Earlier this year, the Hollywood actor and rapper Will Smith told children in the Science Museum that he had a hankering to become a computer engineer.

Will Smith meets a group of school children and Science Museum Director Ian Blatchford beside the Apollo 10 command module on a visit to the Science Museum, London.

Will.i.am grew up in East Los Angeles, one of the roughest neighbourhoods in the United States, where his life could have turned out quite differently without the support of his family and a good education.

Because he feels London is his second home (‘it broke the Peas’), and because the city is at the forefront of fashion and culture, will.i.am decided to combine these passions with the launch of his device.

Called the i.am+ foto.sosho, it will turn an iPhone4/4s smartphone into a fashion accessory and a point-and-shoot digital camera with on-board editing, filters and social media connectivity that will be distributed by Selfridges.

After he came up with the idea in February of this year, during a meal in  the fashionable restaurant Nobu, he founded and self-funded the development and manufacture with experts located in China, Denmark, India, Singapore, the United Kingdom and the United States.

He also said that, by the end of next year, he wants to launch an X-Factor style spin-off show to give young people the chance to express themselves in science and maths so he can identify another technology entrepreneur of the stature of a Gates or Jobs.

Ask a Curator Day

Is there a question you’d always wanted to ask a curator of the Science Museum, but never had the chance to ask before? Maybe what’s your favourite object? What’s the most famous object in your collection? Or why do you like working at the museum?

Science Museum

Well, tomorrow is your chance to ask those burning questions, because it’s Ask a Curator Day – a worldwide Q&A session which lets you put questions to museums around the world, and the Science Museum in London is taking part!

A crack team of Science Museum curators and other staff members will be standing by online to answer you – so start thinking of your questions now.

All you have to do is send your questions to us via Twitter using the #askacurator hashtag. Anyone can follow the questions using the hashtag, and we’ll be sharing the best questions (and answers) throughout the day.

We’ll do our best to answer your questions, although some might take us a little while and we can’t guarantee to answer every single one. Particularly insightful questions that we want to answer at length may well become the basis of a future blog post, like these two posts from David Rooney, our Transport Curator, on how we got the planes in our collection into the Flight Gallery on the third floor!

Wonderful Things: Human Genome books

From Keith Richards to Jordan, books about people’s lives fly off the shelves. But what if they looked like this….?

Dense bedtime reading in the Human Genome books

Created from the Human Genome Project, these replica books (a printed version can be seen at the Wellcome Collection) show the sequence of 3 billion bases of DNA contained within a human cell.

Who did this?

 Beginning in 1990, the Human Genome project, coordinated by the U.S Department of Energy and the national institutes of health, intended to identify human genes, develop understanding of genetic diseases and highlight key developmental processes of the human body.  Whilst initial analysis was released in 2001, the final sequence was completed in 2003.

 What exactly were they looking at?

They were looking at the biological data which makes us unique; the things which make us, us.

 Sounds simple. What about the Science?

Ok. To start with, a genome is all in the DNA in an organism, including its genes which carry information for making proteins.

DNA is composed of four letters carrying instructions for making an organism – A, C G AND T.  Three of these letters together create an Amino Acid. These combinations make up 20 different amino acids and come in a vast number of different orders to create proteins from keratin to haemoglobin.

 Got it.

The human genome is made up of 3 billion bases of DNA, split into 24 chromosomes. Each chromosomes contains a selection of genes – the human genome contains about 20,000 – 25,000 genes.

 Ah, so that’s all the letters?

Exactly. This information can be used to develop new ways to diagnose, treat and someday prevent diseases. Scientists also studied the genetic makeup of non-human organisms including e.coli, the fruit fly and a laboratory mouse.

 Sounds useful, if not a bit sci-fi.

 Yes and, as with much boundary-pushing scientific research, this can lead to opposition and criticism. This was the first large scientific undertaking to address potential ethical, legal and social issues around data.  You might want to think about:

  1. Who should have access to this information?
  2. How much should people intervene with genetics material?
  3. How could this information be used?
  4. Could it be used for financial benefits?

 After all that, fancy some beach reading? 

 The Human Genome book is in the Who Am I? Gallery:  first floor, Wellcome Wing.

-Christopher Whitby

Wonderful Things: Babbage’s brain

Would you expect to find human body parts in the Maths and Computing gallery?

Bizarrely, you can find one half of Charles Babbage’s brain which was donated to the Hunterian Museum by his son Henry (the other half is still with the Hunterian). Many brains of ‘great men’ were kept in the 19th Century to try and discover the nature of the link between the brain and consciousness.

Babbage was a computer pioneer, inventor, reformer, mathematician, scientist, philosopher and political economist!

Babbage, who was seen as a brilliant thinker is regarded as the first computer pioneer. He used his genius-like brains well, excelling in many scientific subjects and after graduating from Cambridge University, he returned in 1828 as Lucasian Professor of Mathematics. What a boffin!

During the 1820’s, brain box Babbage devised the Difference Engine to automate the production of error-free mathematical tables. In 1823 he secured £1500 from the government and hired the engineer Joseph Clement. However, the project collapsed in 1833 when Clement downed tools. By then, the government had spent over £17,000 to build the machine – equivalent to the price of two warships!

It’s widely accepted that the reason for the collapse was because Victorian mechanical engineering was not developed enough to produce such accurate parts. However, some have suggested that it was more to do with issues of economics, politics and Babbage’s temperament and style of directing the enterprise. Not such a genius then….

The Science Museum has a special relationship with Babbage and in 1985 the Museum used its own brain power and launched a project to build Babbage’s Difference Engine No. 2. It was completed and working in November 1991, one month before the 200th anniversary of Babbage’s birth. This proves that had it been built during his life, it would’ve worked.

The figure wheels of Babbage's Difference Engine No 2. Not exactly a Casio calculator is it?

What computer gadget can you not live without?

Can you tell anything of a person’s abilities from bits of their brain?

How do you feel about museums displaying human remains?

Babbage also worked in the field of codebreaking.

With this in mind, why not create a trail for your students to visit our Alan Turing: Codebreaker exhibition, the Maths and Computing galleries to see Babbage’s brain and Making the Modern World to see the trial portion of his Difference Engine and the first Apple I Mac computer!

Babbage’s brain is in the Maths and Computing gallery on the 2nd floor of the Museum.

-Denise Cook

Science of the sprint

Whether you loved or hated it, sport has been on everyone’s minds over the past few weeks.

How did the athletes do it- what’s the science at work behind their incredible feats? Genetics certainly comes into play, but many other factors influence an athlete’s performance, from footwear, to diet and sleep.

So let’s give a little love to the worlds fastest man, Usain Bolt!

There are plenty of videos online about the secret of his sprint- here’s a good one. In brief, it comes down to his stride (longer than the other athletes’ – genetically gifted I guess) and his strength (near-superhuman, probably- but he had to train for that one).

Where does footwear come in? Well, we recently had a team of scientists down from Loughborough University running (no pun intended) a live event in the Antenna gallery- they work on biomechanics and high performance footwear- and it is really quite incredible how much engineering actually goes into a pair of running shoes!

So that’s it guys- get yourself some amazing high-performance trainers, and see you on the starting block in 2016! ;)

 

Wonderful Things: Argo float

The Argo program was set up by a collaborative of research groups at the turn of the century in response to growing concerns about global climate change.

Named after Jason’s “Argo”, a ship in Greek Mythology that undertook the treacherous voyage to capture the Golden Fleece, this ambitious program involves the deployment of data-collecting floats in oceans across the world. They sink to depths of 1500m and only rise to transmit information in real time via a satellite which allows sea temperatures, salt levels (salinity) and ocean velocity to be monitored. There are currently over 3000 floats in circulation.

All Alone: Every year new floats are deployed building an ever more dynamic picture of our oceans

All Alone: Every year new floats are deployed building an ever more dynamic picture of our oceans

One of the most significant features about Argo data is that it is freely available to anyone (www.argo.net). The speed with which the information is recorded and published allows oceanographers to quickly draw seemingly conclusive analytical reports about trends and changes in our oceans.

However, the accessibility of the survey network can lead to problems. Information published has not always been accurate and science writers are quick to use Argo data to shape and support their theories, rather than allowing the data to collate over time to form more conclusive readings.

It is expected that in the not too distant future, the Argo global dataset will provide crucial indications that global warming is happening. Some feel that there is already enough evidence to support this theory and that we should take immediate action to combat its effects.

Let’s pretend for a moment that the people of the world have put their absolute faith in your hands. How would you use Argo data findings? Consider:

Can we really suggest global warming is occurring based on monitoring the oceans alone?

To get a truly conclusive indication that climate change is happening might take many more years of Argo data observation. Would you wait or take action now, potentially making decisions that will affect the lives of millions?

Would it be better if the data collected was less readily available, or do you feel that everyone has the right to such information?

The Argo float is in the Atmosphere Gallery, great for all age groups to explore the many issues concerning climate change in a balanced and engaging way.

-John Inch

Wonderful Things: Trephination set

When suffering from a headache or migraine most of us reach for paracetamol, or aspirin. But, would you consider removing a piece of your skull to reduce the pain?

Trephination – or trepanning- involves making a small incision, by drilling or scraping, in the skull to expose the dura mater (the outermost, and toughest, of the three membranes covering the brain and spinal cord), to treat problems related to intracranial diseases.  Whilst it sounds unusual – and very uncomfortable – this is believed to be one of the oldest medical procedures, with skulls as far back as the Neolithic period showing signs of trephination.

The right tools for the job! Trephination set circa 1770-1830

The right tools for the job! Trephination set circa 1770-1830

In Ancient Egypt, skull scrapings were used to create potions. Both Hippocrates and Galen mentioned the procedure, and it would continue throughout the Middle Ages and into the Renaissance with many people surviving, as seen in archaeological excavations where trepanned skulls show signs of healing around the edge of the hole.

3500-years ago, this patient survived the trephination

3500-years ago, this patient survived the trephination

There are several possible explanations for this procedure:

  • The collection of rondelles, or skull discs (small discs used as charms or amulets to expel demons).  
  • By cutting the bone away, practitioners believed it would cure convulsions, headaches, infections and even fractures by ridding pressure, or removing spirits

Although disregarded by many, the practice still exists in contemporary medicine, but is used mostly for the treatment of epidural and subdural haematoma (a ruptured blood vessel between the skull and the brain.)

Some people today still have the procedure carried out, with many purporting its benefits in increased levels of consciousness or intellectual capacity. 

  • Would you give trephination a go if it made you extra clever?
  • How do cultural or religious issues affect the treatment of pain and illness?

  • In the future, what contemporary medical procedures will seem unusual?

An example of a trephination set can be seen in The Science and Art of Medicine, 5th floor, Wellcome Wing.

 -Christopher Whitby

 

Hello bug-burger!

How will we feed ourselves in the future?

With more and more people on the planet demanding meat, whilst climate change threatens our environment and the price of food goes up, shouldn’t we be worried about where we will get our next meals?

Yes. And lucky for us, there are teams across the world working on how we are going to sustain our exploding population in the decades ahead. 

In the West, many of us are used to eating meat every day. But what if it became a luxury food again, and we had to resort to other sources of protein instead of our beloved burgers?

Insects – or mini livestock- are one interesting idea; many people in the world already eat them, spicy fried locusts, crunchy dried larvae… they are a good source of protein and easy to farm. They’d just need a bit of an image revamp to suit our squeamish sensibilities!

Dig into an insect feast! Many others already do...

Dig into an insect feast! Many others already do…

A worm kebab not doing it for you? What about algae bread? A lab-grown steak? Or making that Kit Kat taste sweeter by listening to bells as you devour it.  All these ideas are being researched now, some will catch on, and some definitely won’t.

One thing is for sure though- food and eating are the very basis of human survival and culture, so anything that impacts that will also affect us very deeply. I wonder what will our meals be like in 20 years time? (Here’s hoping I can still whip up a mean spaghetti al pomodoro without resorting to a can of spider eyeballs!)

Wonderful Things: Crime light

Looking back over the centuries, how many crimes committed back then would have reached a different conclusion if they occurred today with the use of modern science and technology?

 Advances in Forensic Science means that crime-scene evidence can be accurately gathered and examined, from collecting DNA and fingerprints to gunpowder residue from armed robbery, kidnap and murder.

 DNA profiling is a powerful tool in identifying a killer. Present in every cell, it identifies you and only you and it is what’s usually left behind at a crime scene.

 The Metropolitan Police estimate that they examine over 11,000 crime scenes each month and here in Who Am I? gallery, you will be able to take a look at a display of a real-life case that they needed to solve. The equipment that you will see was used by a team of forensic scientists who worked with the Metropolitan Police to solve the crime, using the latest DNA profiling technology and forensic science techniques, in particular a light source examination of the scene and objects.

 One of the items on display in this case is a crime light which was used at the scene and in the lab to detect body fluids. This LED forensic light source called Crime-lite uses filters of different colours along with viewing goggles to reveal blood splatters and fingerprint evidence otherwise difficult to detect just by looking. Providing intense, even and shadow free illumination for locating evidence, Crime-lite uses a white light for general search and seven narrow band wavelengths in UV, violet, blue, blue-green, green, orange, and red.

Crime-Lite- A Forensic's handiest tool?

Take a look at how a real forensic scientist from the Metropolitan Police North-West fingerprint lab uses this technology to detect and enhance hidden marks on a knife from a GBH incident.

  • Can you think of any infamous crimes that would’ve benefitted from a ‘Crime-lite’ or DNA profiling to solve the case?
  • Can we rely on evidence collected in this way? Is it always 100% accurate?
  • What could contaminate evidence? What preventative causes do you think police officers on the scene of a crime take to make sure they don’t disturb any evidence?

 Fancy letting your students having a go to see if they can solve a crime? Our KS3 Crime Lab kit contains three activities that covers scientific techniques related to identity and can also be used to solve our crime story about an attempted robbery at the ScienceMuseum.

To learn more about how DNA evidence can help us solve crimes, visit the Who am I? gallery on the first floor of the Wellcome Wing.

-Denise Cook

Sceptics, change your tune

No, this isn’t about the Olympics… I’m sure you’ve all heard so much about Olympic fever (you may even be deep in the grips of it), so we’re going to give you a break from it for a minute.

This is about climate change (and we’ve heard so much about that too!). That the climate has been changing is almost universally accepted inside and outside scientific circles- but that the fluctuation is actually due to human activity has been a matter of debate for some scientists.  Now a groundbreaking study has given powerful indications that the 1.5C rise in temperature over the past 250 years is due to our busy work on the planet- and has even turned some sceptics!

So what is different about this study compared to all the others? First of all, it analysed data as far back as 1753 (previous datasets only collected from mid-1800s), and instead of having a human organize the data, it was done entirely by a computer (eliminating the criticism that scientists would apply their own bias to the data). The research plotted the upward temperature curve against suspected ‘forcings’ to analyse their warming impact- for example solar activity, or volcanoes. It turned out the best match was for atmospheric carbon dioxide levels- which as we all know have been on the rise, linked to our use of fossil fuels and the ice caps melting.

Our addiction to fossil fuels is getting us in hot water

Our addiction to fossil fuels is getting us in hot water

Interestingly, the results of the data analysis were all released before this paper was even published- another move aimed at appeasing the climate sceptics! So whilst some continue to be vocal about their dissent, others including Prof Richard Muller (who started the whole project!) have changed their tune: “We were not expecting this, but as scientists, it is our duty to let the evidence change our minds.”

That’s really powerful, because we don’t always think of scientists having an agenda, but they do- just like any other people they have beliefs and theories about the way the world works. But if we are to get closer to understanding the way it really does work, we must be open to changing or refining those ideas if new evidence arises.

Luckily we aren’t the only ones who say this! Einstein said ” The important thing is not to stop questioning…” and that is one of the most important skills for your students to pick up, not just scientifically but applicable to all walks of life.

We like to model this for teachers and students using Mystery Boxes - try it out as an icebreaker, and to teach How Science Works in a fun, hands-on way.