Category Archives: Exhibitions

Alan Turing granted Royal pardon

A posthumous pardon has been granted to the great mathematician, logician, cryptanalyst, and philosopher, reports Roger Highfield, Director of External Affairs

Alan Turing, the wartime codebreaker who laid the mathematical foundations of the modern computer, has been granted a posthumous pardon by the Queen for his criminal conviction for homosexuality.

A Royal pardon is usually only granted where a person has been found innocent of an offence and a request has been made by a family member. This unusual move brings to a close a tragic chapter that began in February 1952 when Turing was arrested for having a sexual relationship with a man, then tried and convicted of “gross indecency”.

Portrait of Alan Turing. Image credits: NPL / Science Museum

Portrait of Alan Turing. Image credits: NPL / Science Museum

To avoid prison, Turing accepted treatment with the female sex hormone oestrogen: ‘chemical castration’ that was intended to neutralise his libido.

Details of the circumstances leading to his death on 7 June 1954, at home in Wilmslow, Cheshire, can never be known. But Turing had himself spoken of suicide and this was the conclusion of the coroner, following an inquest.

In 2009 Gordon Brown, the then Prime Minister, issued a public apology for his treatment. A letter published a year ago in the Daily Telegraph, written by Lord Grade of Yarmouth and signed by two other Science Museum Trustees, Lord Faulkner of Worcester and Dr Douglas Gurr, called on the Prime Minister to posthumously pardon Turing.

Turing has now been granted a pardon under the Royal Prerogative of Mercy after a campaign supported by tens of thousands of people. An e-petition calling for a pardon received more than 37,000 signatures.

Chris Grayling, the Justice Secretary, said: “A pardon from the Queen is a fitting tribute to an exceptional man.”

The pardon states: “Now know ye that we, in consideration of circumstances humbly represented to us, are graciously pleased to grant our grace and mercy unto the said Alan Mathison Turing and grant him our free pardon posthumously in respect of the said convictions.”

But the reaction to the news has been mixed. Turing biographer Dr Andrew Hodges, of Wadham College, Oxford, told the Guardian newspaper : “Alan Turing suffered appalling treatment 60 years ago and there has been a very well intended and deeply felt campaign to remedy it in some way. Unfortunately, I cannot feel that such a ‘pardon’ embodies any good legal principle. If anything, it suggests that a sufficiently valuable individual should be above the law which applies to everyone else.

“It’s far more important that in the 30 years since I brought the story to public attention, LGBT rights movements have succeeded with a complete change in the law – for all. So, for me, this symbolic action adds nothing.

“A more substantial action would be the release of files on Turing’s secret work for GCHQ in the cold war. Loss of security clearance, state distrust and surveillance may have been crucial factors in the two years leading up to his death in 1954.”

The Science Museum’s award-winning Turing exhibition,which closed a few months ago, showed that a signature moment of Turing’s life came on February 13, 1930, with the death of his classmate and first love, Christopher Morcom, from tuberculosis.

Science Museum conservator Bryony Finn inspects the Pilot ACE computer - at a preview of the Codebreaker: Alan Turing’s Life and Legacy exhibition at the Science Museum. Image credits: Science Museum

Science Museum conservator Bryony Finn inspects the Pilot ACE computer – at a preview of the Codebreaker: Alan Turing’s Life and Legacy exhibition at the Science Museum. Image credits: Science Museum

As he struggled to make sense of his loss, Turing began a lifelong quest to understand the nature of the human mind and whether Christopher’s was part of his dead body or somehow lived on.

Earlier this year Turing’s Universal Machine, the theoretical basis for all modern computing, won a public vote, organised by the Science Museum, GREAT campaign and other leading bodies in science and engineering to nominate the greatest British innovation of the last century.

‘Tis the season to 3D print your Christmas

Press Officer Laura Singleton explores some festive 3D printing.

Christmas can be one of the most stressful times of the year – with presents to wrap, trees to be put up and cards to be written. Finding the perfect gift or decoration can be expensive, time-consuming and exhausting. Could the rise of 3D printing provide the answer to our seasonal woes and even tap into our hidden creativity?

Earlier this month we were pleased to unveil a dramatic 3D printed titanium star, which sits on top of the Director’s Christmas tree. The star, which measures 44cm wide, is an awe-inspiring example of what can be achieved on a 3D printer. The star’s design is based on fractals, the self-repeating patterns found within a Mandelbrot set.

Close up of Jessica Noble's 3D printed titanium star. Image credits: Science Museum

Close up of Jessica Noble’s 3D printed titanium star. Image credits: Science Museum

The star was the result of a challenge set by the Science Museum’s Director Ian Blatchford at last year’s Christmas party. Attendees to the event were challenged to come up with an innovative design for a star – to be created and displayed on our Christmas tree.

Jessica Noble's 3D printed titanium star. Image credits: Science Museum

Jessica Noble’s 3D printed titanium star. Image credits: Science Museum

Conceived and designed by London based designer Jessica Noble, with help from Nottingham University, the star features a central nylon core and 97 3D printed individual titanium stars printed by Renishaw that were then connected to the core using carbon fibre rods. The individual parts make the star easy to assemble, dissemble and rearrange – a clear advantage over other types of decoration. The Mandelbrot reference gives a nod to the Science Museum’s mathematical collections.

Designer Jessica Noble with her 3D printed star on top of the Director's Christmas tree. Image credits: Science Museum

Designer Jessica Noble with her 3D printed star on top of the Director’s Christmas tree. Image credits: Science Museum

However, you don’t need to be an artist or designer to take advantage of the benefits of 3D printing. Many printers are now available on the high street and can produce smaller scale designs of your choice. Our Inventor in Residence, Mark Champkins, has taken advantage of the technology by creating a range of decorations and gift tags for the Science Museum’s shop that can be 3D printed in under 15 minutes.

A selection of 3D printed snowflakes created in the Science Museum's store. Image credits: Science Museum

A selection of 3D printed snowflakes created in the Science Museum’s store. Image credits: Science Museum

As the museum’s store now sells 3D printers, we’ve set one up to demonstrate how the technology works. Should you wish to buy a decoration such as a snowflake or star, you can choose a design and watch it being printed – ready for you to take home. Why not pay a visit to the museum and try it out?

A 3D printed snowflake designed by Inventor in Residence, Mark Champkins. Image credits: Science Museum

A 3D printed snowflake designed by Inventor in Residence, Mark Champkins. Image credits: Science Museum

The link between science and design was the topic of a recent debate held jointly at the Science Museum and Design Museum and attended by Universities and Science Minister, David Willets MP. Organised with the Technology Strategy Board (TSB) and the Engineering and Physical Sciences Research Council, the debate focused on breaking down language barriers and encouraging interaction between scientists, engineers and designers explained David Bott, Director of Innovation Programmes at the TSB.

3D printing is rapidly changing society – whether at home, work or our leisure activities. You can find more examples of how the technology is growing in our free exhibition, 3D: Printing The Future, which showcases over 600 3D printed objects including prototypes for replacement body organs, bike gadgets and aeroplane parts.

JJ Thomson’s Cathode-ray tube

Rupert Cole celebrates JJ Thomson’s birthday with a look at one of the star objects in our Collider exhibition.

Holding the delicate glass cathode-ray tube in my hands, once used by the great physicist JJ Thomson, was an incredible treat, and an experience I will never forget.

I had read lots about Thomson’s famous experiments on the electron – the first subatomic particle to be discovered – but to actually see and touch his apparatus myself, to notice the blackened glass and the tube’s minute features that are omitted in books, brought the object to life. History suddenly seemed tangible.

Using more than one cathode-ray tube in 1897 for his experiments, Thomson managed to identify a particle 1,000 times smaller than the then known smallest piece of matter: a hydrogen atom. Cambridge’s Cavendish Laboratory, where Thomson spent his scientific career, also has an original tube in its collection.

Each tube was custom-made by Thomson’s talented assistant, Ebenezer Everett, a self-taught glassblower. Everett made all of Thomson’s apparatus, and was responsible for operating it – in fact, he generally forbade Thomson from touching anything delicate on the grounds that he was “exceptionally helpless with his hands”.

The quality of Everett’s glassblowing was absolutely crucial for the experiments to work.

Cathode-rays are produced when an electric current is passed through a vacuum tube. Only when almost all the air has been removed to create a high vacuum – a state that would shatter ordinary glass vessels – can the rays travel the full length of the tube without bumping into air molecules.

Thomson was able to apply electric and magnetic fields to manipulate the rays, which eventually convinced the physics world that they were composed of tiny particles, electrons, opposed to waves in the now-rejected ether.

Find out more about Thomson and the story of the first subatomic particle here, or visit the Museum to see Thomson’s cathode-ray tube in the Collider exhibition. If you’re interested in the details of how Thomson and Everett conducted their experiments visit the Cavendish Lab’s outreach page here.

From Frog Pistols to Freud – the Making of the Mind Maps Exhibition

Journalist and broadcaster Samira Ahmed goes behind the scenes of our new exhibition, Mind Maps: Stories from Psychology, which opens to the public this week.

It looks like a kind of over-engineered Victorian executive toy: A semicircle of metal with carefully marked grooves and two long wooden arms with padded covers like two giant matchsticks. Curator Phil Loring and I are having a go at the Fechner sound pendulum that tried to measure the speed of thought, through timing the “just noticeable difference” heard in each arm hitting the base.

Samira Ahmed and Curator Phil Loring examine the Fechner sound pendulum for the video of the making of the exhibition.

Samira Ahmed and Curator Phil Loring examine the Fechner sound pendulum for the video of the making of the exhibition.

It’s incredibly complex to use and hard to see what useful data they would have obtained. But it is a fascinating example, like all of the exhibits in this new show, of the unique challenge of psychology through the ages and the huge efforts that have gone in over the centuries to quantify scientifically, physically, the hidden processes of our minds.

There’s a historical journey through human attempts to explain the mind’s makeup, searching for physical not just mystical explanations. Medieval Europeans looked to the fluids of the body; the physical power of the four humours to explain character. You can imagine Chaucerian Englanders saying “He’s always really moody. That’s typical black bile, that is.” And it’s comparable to the strangely enduring hold in many cultures today of astrology.

The most dramatic displays are of the physical beauty of a 17th century Italian nerve table. Here we see human nerve strands dissected, stretched out and varnished like an intricate bare-leafed tree, as if in detangling the physical form, one might detangle the intricacy of psychology.

Going through the Science Museum’s storage vaults while making the introductory film (above) for this exhibition, I was struck by how rich the history of mind study is with physical objects. Particularly frogs. On show you’ll see anthropological curiosities like the amuletic dried frog in a silk bag from early 20th century south Devon (to cure fits).

Amuletic dried frog in a silk bag from early 20th century south Devon.

Amuletic dried frog in a silk bag from early 20th century south Devon.

And German scientist Emil du Bois-Reymond’s “frog pistol” in the 1860s. Frogs are certainly featured in the work of the 18th century Italian pioneer whose work forms the highlight of Mind Maps: equipment and sketches belonging to Luigi Galvani of Bologna – who gave his name to galvanism and has inspired everything Gothic and re-animated from Mary Shelley’s Frankenstein to Douglas Trumbull’s film Brainstorm.

Pistolet, or `Frog Pistol', devised by du Bois-Reymond, for demonstrating the stimulation of nerves in a frog's leg, by Charles Verdin, Paris, c1904. Credit: Science Museum

Pistolet, or `Frog Pistol’, devised by du Bois-Reymond, for demonstrating the stimulation of nerves in a frog’s leg, by Charles Verdin, Paris, c1904. Credit: Science Museum

Luigi Galvani and his wife, Lucia, a trained anatomist, got through a lot of dead frogs as they explored the relationship between nerve activity and electricity. In an interesting link back to the medieval humours, Galvani saw electricity as a fluid. And as with the Fechner thought-measuring pendulum, you can feel the frustration embodied in Galvani’s sandglass that could measure fractions of an hour, but not the fractions of a second needed for the speed of nerve movements in his experiments.

Sandglass, in metal frame, Galvani collection. Credit: Science Museum

Sandglass, in metal frame, Galvani collection. Credit: Science Museum

Freud, shellshock and modern psychiatric medicine are placed for the first time for me, in a scientific continuum: I see in this exhibition a tale within a tale – the story of human thinking stretching ambitiously beyond the technology of its time. The exhibition is the story of nothing less than the human quest to find the elusive quintessence of human existence: the soul and its torments.

Mind Maps: Stories from Psychology, a free exhibition exploring our understanding of the mind, opens on Dec 10 and runs until August 2014. The exhibition is supported by the British Psychological Society (BPS).

 For more of Samira’s writing follow her via @samiraahmeduk or on samiraahmed.co.uk

Science Museum stars in UK-Russia Year of Culture

Roger Highfield, Director of External Affairs, reveals a remarkable new exhibition opening in 2014.

A landmark exhibition of the Russian vision and technological ingenuity that launched the space age is to be the centrepiece of the largest ever festival of Russian and British culture.

Under the working title of ‘Russia’s Space Quest’, the Science Museum exhibition will bring unknown stories of space endeavour to life through a unique collection of space artefacts, many of which have never before been seen either outside Russia or in public.

The exhibition will be the headline attraction of the 2014 UK-Russia Year of Culture, a year-long programme of events that will celebrate the rich cultural heritage of both countries, according to the British Council and Russian Ministry of Foreign Affairs.

Announcing the UK-Russia Year of Culture at the Science Museum

Announcing the UK-Russia Year of Culture at the Science Museum

Olga Golodets, the Deputy Prime Minister for Social Affairs of the Russian Federation, said the year of culture ‘will lay a solid foundation for long-term cooperation in the future in various areas.” Rt Hon. the Baroness D’Souza, Lord Speaker, said it was a delight to launch the initiative.

At a launch event in the museum, Ed Vaizey, UK minister for culture, stressed the importance of the year for UK-Russia relations and  said it would be a “flow of ideas”. This point was echoed by Mikhail Shvydkoy, President Putin’s special envoy for international cultural cooperation, who hoped the project would create “new trust” between the two countries.

Paul de Quincey, director of the British Council in Russia, also announced BP as the first UK Founder Sponsor of the UK-Russia Year of Culture, represented by Peter Charow, VP of BP Russia.

Among the star objects on display in Russia’s Space Quest will be cosmonaut-flown spacecraft, pioneering rocket engines, space suits and other life support systems. There will also be examples of the personal and poignant – memorabilia belonging to some of the biggest names in spaceflight.

SOKOL space suit worn by Helen Sharman in 1991, manufactured by 'Zvezda'.

SOKOL space suit worn by Helen Sharman in 1991, manufactured by ‘Zvezda’. Credit: SSPL

The director of the Science Museum, Ian Blatchford, said such an exhibition, the equivalent in impact of the British Museum’s landmark Tutankhamen exhibition, had been a dream of Deputy Keeper, Doug Millard, for more than two decades.

‘Russia’s Space Quest’, which is being led by curators Doug Millard and Natalia Sidlina, represents a major collaboration between the Moscow State Memorial Museum of Cosmonautics and the Federal Space Agency, Roscosmos, and draws on the support of many institutions and individuals in the UK and Russia.

Mr Blatchford said that it was important to have this exhibition to capture the excitement of the early years, while scientists, engineers and technicians from the Russian quest were still alive: “It is imperative that we do this exhibition now, before their stories are lost – as that would be a terrible blow.”

‘Russia’s Space Quest’ will also explore the science and technology of Russian space travel in its cultural and spiritual context, revealing a deep rooted national yearning for space that was shaped by the turbulent early decades of the twentieth century.

The dream of the Cosmists became a reality between October and November 1957, when Sputnik and then Laika the space dog were launched, and 1961 when the rest of the world watched in astonishment as  a Russian man became the first human to look down on our fragile blue world.

This week Intandem Films and Russia’s Kremlin Films joined the Russian Embassy to host a special screening in the Museum’s IMAX of the $10 million budgeted biopic Gagarin: First in Space.

The movie, directed by Pavel Parkhomenko, is produced by Oleg Kapanets and Igor Tolstunov and stars Yaroslav Zhalnin, Mikhail Pilippov and Viktor Proskurin.

The film dramatizes the story of how Yuri Gagarin was selected from over 3,000 fighter pilots across the USSR to take part in his country’s space program, that culminated in him blasting off in a Vostok rocket on April 12, 1961, after several failed unmanned launches.

The screening at the museum was hosted by the Russian Ambassador Alexander V Yakovenko, who praised Russia’s Space Quest as one of the  most important cultural events staged and supported by the U.K. and his country, and attended by Culture Minister Maria Miller.

The biopic was introduced by Yuri Gagarin’s daughter, Elena Gagarin, who said the world changed forever after her father made the first manned flight into space.

Collider: Celebrating with Higgs and Hawking

This week we were joined by two of the world’s most eminent scientists, Stephen Hawking and Peter Higgs, to celebrate the opening of our Collider exhibition.

Peter Higgs and Stephen Hawking in the Collider exhibition.

Peter Higgs and Stephen Hawking in the Collider exhibition.

The exhibition, open until May 2014, explores the people, science and engineering behind the largest scientific experiment ever constructed, the Large Hadron Collider at CERN.

After a packed event in Parliament on Monday evening (more about that here), Higgs and Hawking joined us for a full day of public events on Tuesday.

The day began with Professor Peter Higgs answering questions from a lucky group of students from across the UK in our IMAX theatre – with thousands more watching the Guardian live stream online.

Higgs talked about his scientific hero Paul Dirac (who went to Peter’s school), being nominated for the Nobel Prize and whether discovering the Higgs boson was a good thing for physics. “Do you expect me to say it’s a bad thing,” joked Peter.

I always found physics rather dull at school. Chemistry was far more interesting – Peter Higgs.

The afternoon featured a spectacular double-bill of science and culture, with novelist Ian McEwan and theoretical physicist Nima Arkani-Hamed in conversation and an audience with Stephen Hawking.

Presented by broadcaster Martha Kearney, McEwan and Arkani-Hamed shared their thoughts on similarities and differences between the two cultures. Professor Arkani-Hamed explained that the gulf between arts and science is one of language, often mathematics, with McEwan discussing the obsessive element in science – the pursuit of something larger than ourselves – and it’s similarity to the arts.

I like to think of science as just one part of organised human curiosity – Ian McEwan. 

It was a very rare treat, and a huge honour, to journey into time and space with Stephen Hawking. Stephen shared that the Science Museum was one of his favourite places, “I have been coming here for decades. And that simple fact, in itself, tells quite a story.”

He went on to discuss his early work on black holes (Hawking would like the formula he wrote to be on his memorial) and the information they contain, “Information is not lost in black holes, it is just not returned in a useful way. Like burning an encyclopaedia, it’s hard to read.”

Hawking finished his talk with a plea to us all to be curious.

“The fact that we humans, who are ourselves mere collections of fundamental particles of nature, have been able to come this close to an understanding of the laws governing us, and our universe, is a great triumph.

So remember to look up at the stars and not down at your feet. Try to make sense of what you see and hold on to that childlike wonder about what makes the universe exist.”

As the day ended, the recent Nobel Prize winner and our most famous living scientist were given a tour of Collider.

Stephen Hawking views the Collider exhibition with curator Ali Boyle

Stephen Hawking views the Collider exhibition with curator Ali Boyle

We’ll leave the final word to Ali Boyle, the Collider exhibition curator.

Visitor Letters – Spaldwick School

We love receiving letters from our visitors and we always try our best to write back as soon as possible.

Recently pupils from Spaldwick School visited the Launchpad gallery and saw the Feel the Force science show presented by Explainer Dwain on their outing to the Museum (click to enlarge letters).

Explainer Dwain was so impressed that he thanked the pupils of Spaldwick school and answered queries about his co-star in the Feel the Force show – Phil the Frog!

SpaldwickA

Response Letter – pages 1 & 2

Response Lettter - pages 3 & 4

Response Lettter – pages 3 & 4

Explainer Fact: If you would like to send us a letter, please send it to: Launchpad Letters, Science Museum, Exhibition Road, South Kensington, London, SW7 2DD

LHC: Lip Hair Champions

Content Developer Rupert Cole explores some famous moustaches in particle physics ahead of the opening of our new Collider exhibition on 13th November. 

It’s that time again: Movember – the eminently charitable moustache-growing month raising awareness for men’s health. But what, you might reasonably wonder, has facial hair got to do with particle physics? Well, I have a theory; one backed by hard pictorial and anecdotal evidence…

The Cavendish lab’s moustachioed students, 1897. Credit: Cavendish Laboratory

The Cavendish lab’s moustachioed students, 1897. Credit: Cavendish Laboratory

Consider the glory days of Cambridge’s Cavendish Laboratory, during which the first subatomic particle was identified, a revolutionary particle detector invented, and the atomic nucleus split by one of the first particle accelerators. Significantly, the great Cavendish leaders and pioneers of this period cannot be accurately described as clean shaven.

Joseph John Thomson

JJ Thomson has a “rather straggling moustache,” wrote a talented student called Ernest Rutherford in 1896, “but a very clever-looking face and a fine forehead”. In another letter to his fiancé, Rutherford made the additional comment that Thomson “shaves very badly”.

We may detect a hint of jealousy in Rutherford’s description of Professor “JJ”. As, according to one chronicler of the lab’s history, the young student Rutherford possessed only “a thinly sprouting moustache”.

JJ Thomson. Credit: Cavendish Laboratory

JJ Thomson. Credit: Cavendish Laboratory

Nevertheless, concealed in Thomson’s supposedly wayward bristles was a creative and audacious genius. At the time, the Cavendish’s director had been performing his groundbreaking experiments on cathode rays. The next year he shocked the scientific world when he announced the existence of a particle smaller than the smallest atom – later dubbed the “electron”.

Ernest Rutherford

Once the rambunctious New Zealander’s lip-hair had acquired its full bushy substance, he was well on the way to scientific stardom.

His first momentous contribution to physics came in 1902 at McGill University, Canada. Rutherford and his colleague Frederick Soddy explained what radioactivity actually is – the process of atomic decay.

Soddy described his co-discoverer simply as an “exuberant natural, young man with a moustache”. Biographers would later characterise Rutherford’s ever-growing asset as reminiscent of a “walrus”.

By the time he succeeded his old moustachioed mentor, JJ Thomson, as Professor of the Cavendish, Rutherford had already discovered the atomic nucleus (1911) and managed to split nitrogen atoms in half, causing them to transmute into two oxygen atoms (1917-19).

But it was at the Cavendish that he ushered in the era of accelerator physics. Contemporaries recall a particular accessory: a pipe, containing the world’s driest and instantly-flammable tobacco.

Ernest “The Walrus” Rutherford. Credit: Science Museum / SSPL

Ernest “The Walrus” Rutherford. Credit: Science Museum / SSPL

On one Spring day in 1932, Rutherford entered the lab in a famously foul mood. His pipe “went off like a volcano” – having pre-dried his tobacco on a radiator. Impatient at the progress his young researchers John Cockcroft and Ernest Walton had made with their 800,000-volt proton accelerator, he instructed them to “stop messing about… and arrange that these protons were put to good use”.

At Rutherford’s suggestion, they immediately installed a zinc-sulphide scintillation screen – a device which causes charged particles to sparkle when they hit – into their wooden observation hut. A few days later, Walton saw on this screen evidence that their machine was splitting the nucleus of lithium atoms!

Had the authority of the tache and pipe not intervened, the Cavendish men may have been pipped to the discovery by the clean-shaven American teams, who boasted the biggest and best of accelerators.

Charles Thomson Rees Wilson

CTR Wilson, one of Rutherford’s fellow students at the Cavendish, was a
“modest” personality with a similarly unassuming moustache. He spent 16 years assembling cloud chambers – a device he initially invented to study meteorological phenomena.

A keen mountaineer – an activity that always complements well-trimmed bristles – Wilson derived inspiration to build cloud chambers when he was atop Ben Nevis, observing beautiful optical effects.

His third and final chamber, completed in 1911, was later described by Rutherford as “the most original and wonderful instrument in scientific history”. Incredibly, it could capture with photographs the tracks of particles. Wilson had invented the first detector that could visualise and record the subatomic world.

CTR Wilson, 1927. Credit: AB Lagrelius and Westphal

CTR Wilson, 1927. Credit: AB Lagrelius and Westphal

It seems remarkable that the humble moustache may have had such a crucial role in the foundation particle physics. Never again would the Cavendish be led by lip-hair champions; and considering the lab’s unprecedented success in this golden period, we can reliably infer the cost of this absence.

I leave you with the words of Arthur Eddington: “An atom which has lost an electron is like a friend who has shaved-off his moustache.”

Next week you can see Thomson’s cathode-ray tube, Rutherford’s atomic models, the Cockcroft-Walton accelerator, CTR Wilson’s cloud chamber, and much more at the Science Museum’s new Collider exhibition. 

For more famous physics moustaches click here.

LHC: Lifting Heavy Contraptions

Curator Ali Boyle on how the Collider team are installing some of the larger objects in our new exhibition. 

It’s just three weeks to go until Collider opens with a flurry of exciting events. Which means that we’re getting to the best part of exhibition work – after all the planning, the objects are finally starting to make their way onto gallery.

That’s sometimes easier said than done when your objects come from CERN. A few are so large that we’ve had to install them on gallery early and build the rest of the exhibition around them. First up was the object we call The Beast, a 2-tonne section of one of the giant dipole magnets that keep the LHC’s particle beams on course.

Thankfully it was only a section – a whole LHC magnet weighs in at 35 tonnes and is 15 metres long. And our basement gallery is a lot easier to get to than a tunnel 175 metres below ground, the challenge faced by CERN as they upgrade the LHC’s magnet system.

dipole_lifting

Conservator Richard (in white) supervises The Beast being lowered onto its trolley. (Credit: Alison Boyle)

Another 2-tonne behemoth, delivered from CERN that morning, followed – an accelerating cavity from LEP, the Large Electron Positron collider, which previously occupied the tunnel that now houses the LHC. The copper cavity, used in the first phase of LEP operations, looks like something Jules Verne might have imagined.

The LEP cavity's storage sphere is carefully lowered into place. (Credit: Alison Boyle)

The LEP cavity’s storage sphere is carefully lowered into place. (Credit: Alison Boyle)

Of course, being the Science Museum, we’re used to big bits of kit. The LHC objects, although hefty, were a piece of cake compared with getting the planes in. Or handling the 4-tonne Rosse Mirror, which we moved into its current position in Cosmos & Culture in 2009.

Made of speculum, a mixture of copper and tin, the Rosse Mirror is six feet in diameter. It is one of the few surviving original pieces of the largest scientific instrument of its day, the enormous telescope built by the Earl of Rosse at Birr Castle in the Irish midlands and known as the  ‘Leviathan of Parsonstown’. The mirror was donated to us in 1914 – here it is being delivered.

Easy does it … moving the Rosse Mirror into the Western Galleries, 1914. (Credit: Science Museum)

There’s a clear distinction between ‘doers’ and ‘watchers’ in this photograph. On Collider this week I was definitely the latter. As those keen observers of the museum world, the Ministry of Curiosity, point out, curators rarely do the actual muscle work.

So, rather than take my word for it, why not ask someone who really knows about moving big bits of particle accelerator around? Lyn Evans (or ‘Evans the Atom’ as he’s dubbed in the press) was Project Leader for the LHC build. Next Wednesday 30 October, thanks to our friends at the London Science Festival, you can hear him talk about the LHC’s engineering challenges at Science Museum Lates. He’ll be joined by Collider‘s very own Harry Cliff, who’ll give a sneak preview of how we’re bringing CERN to South Kensington. Not all of it obviously, as that would be a bit too heavy…

Discover more about the Higgs boson and the world’s largest science experiment in our new exhibition, Collider, opening on 13th November 2013.

3D printing – an explosion of creativity!

Suzy Antoniw, Content Developer in the Contemporary Science Team, looks at the creation of a new exhibition on 3D printing.

What can make impossible shapes solidly real and create unique, one-off medical treatments that could change your life? A 3D printer of course!

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

Around nine months ago we were given the exciting challenge of creating 3D: Printing the Future, a new Contemporary Science exhibition to show off the real-life capabilities of these hugely hyped machines and highlight the latest 3D printing research.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer. Image credit: Science Museum

But hang on, what exactly is a 3D printer? Even if you’ve read stories about them in the news you probably don’t have one sitting on your desk just yet. So here’s our definition: A 3D printer is a manufacturing machine that turns 3D computer data into a physical object, usually by building it in layers. They come in a variety of types that range from simple consumer models to sophisticated industrial printers.

A prosthetic arm concept  made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

A prosthetic arm concept made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

As well as covering the basics, we decided that our exhibition should focus on the incredible things that 3D printers can create – such as replacement body organs and teeth, that could make a difference to the lives of our visitors.

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printers have been around for decades, so what’s changed? In recent years the patents on simple 3D printing technologies have run out. 3D printers have become available to more people in the form of affordable consumer models, or even as open source plans freely available on the internet.

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

This new freedom to invent has generated an explosion of creativity. And it’s not just hackers, tinkerers and makers who’ve felt the benefits of this new breath of life for engineering and design, but established industry and academia too. So how do you represent a diverse and dynamic explosion of creativity?

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

In July we began collecting 3D printed stuff for what has been known as ‘an explosion’, our ‘mass display’, ‘the wave’, ‘the wall’ and (my favourite) a ‘tsunami of objects’. The display contains over 663 objects – the largest number we’ve ever acquired for a Contemporary Science exhibition, thanks to generous loans, donations and the enthusiasm of the maker community.

Among the amazing ‘wave’ of objects you can see a display of 150 miniature 3D printed people – visitors who volunteered to have themselves scanned in 3D at the Museum over the summer holidays. Look closely at the wall and you may spot actress Jenny Agutter reading her script, model Lily Cole and BBC Radio 4 presenter Evan Davis - with his arm in a sling!

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

The free exhibition is open to the public from 9 October and will run for nine months.