Category Archives: Information Age

Her Majesty The Queen sends her first tweet to unveil the Information Age

By Roger Highfield, Director of External Affairs

Her Majesty The Queen this morning opened the pioneering Information Age gallery at the Science Museum by sending her first tweet to the world, 76 years after The Queen’s first visit to the museum.

HM The Queen opens the Science Museum's Information Age gallery by sending her first tweet

HM The Queen opens the Science Museum’s Information Age gallery by sending her first tweet. Credit: Science Museum

The Queen and His Royal Highness The Duke of Edinburgh had earlier toured the landmark gallery, which explores the six networks that have transformed global communications, listening to personal recollections of people whose first experience of television was watching her Coronation in 1953.

Inviting Her Majesty to open the gallery, Science Museum Director Ian Blatchford remarked on how royalty had embraced communications technology from the day Queen Victoria took an interest in the invention of the telephone, which was demonstrated to her in January 1878 by Alexander Graham Bell at Osborne House, Isle of Wight.

“Your Majesty has followed in this tradition,” said Mr Blatchford while addressing around 600 guests including communications entrepreneurs, authors and experts, from Baroness Lane Fox, Hermann Hauser and Mo Ibrahim to Prof Steve Furber, James Gleick, Tom Standage and Sir Nigel Shadbolt.

“You made the first live Christmas broadcast in 1957,” he added, “and an event relished by historians took place on 26 March 1976, when you became the first monarch to send an email, during a visit to the Royal Signals and Radar Establishment. “

Then Mr Blatchford invited Her Majesty to join him to “send your first Tweet”.

The Queen removed a glove to send her pioneering tweet from the @BritishMonarchy Twitter account.

 

The Queen's first Tweet

The Queen’s first Tweet

This marked the first time that a reigning British monarch contributed one of the half billion or so tweets that are sent every day.

The Queen has a long relationship with the Science Museum and first visited in March 1938, as a princess, a few years after it launched a pioneering Children’s Gallery.

Today she explored Information Age: Six Networks That Changed Our World, the first museum gallery dedicated to the history of information technologies, containing more than 800 iconic objects and six state-of-the art interactive displays in story boxes connected by an elevated walkway.

The £16 million project saw collaborations with leading artists and thinkers, including Olivier award-winning video and projection designer Finn Ross, artists Matthew Robins and Rafael Lozano-Hemmer, broadcaster Bonnie Greer and developer of the world wide web, Sir Tim Berners-Lee.

From the dramatic story of the laying of the first transatlantic telegraph cable that connected Europe and North America  to the birth of the modern smartphone, it looks at how today’s  world was forged with six communication networks: the telegraph; the telephone, radio and television broadcasting; satellite communications; computer networks; and mobile communications.

Lead curator Dr Tilly Blyth showed The Queen and The Duke of Edinburgh around the exhibition, from the bright yellow call box from Cameroon to the BBC’s first radio transmitter from 1922 to the monumental 6-metre high aerial tuning inductor from Rugby Radio Station that lies at the heart of the gallery.

This strangely beautiful web of copper and wood was once part of the most powerful radio transmitter in the world and was donated to the Science Museum by BT.

Over 410,000 people follow the Science Museum on Twitter via @sciencemuseum.

We use twitter to share as many fascinating objects (some weird, others wonderful) and stories from our exhibitions and collections as possible.  In the past we have shared science jokes and organised a Q&A with an astronaut.

We’ve even taken our followers inside Charlie Brown, the Apollo 10 Command Module.

Our curators regularly take over the @sciencemuseum account, taking hundreds of thousands of followers on Twitter tours of their favourite objects. In the past, @rooneyvision has shared his story of how we made the modern world, with @ali_boyle selecting her favourite objects from our astronomy collection (you can read the #CosmosTour here).

The @ScienceMuseum account was also at the heart of the Great British Innovation vote which attracted more than 50,000 votes from the public for their favourite innovation.

We love reading tweets from the millions of you who visit each year, sharing stories of visits, getting engaged and even dancing under our rockets.

From astronauts to pop stars, we have had the pleasure of meeting and tweeting many famous faces. Astronaut Gene Cernan, the last man on the moon, joked with us about driving a NASA moon buggy, with Chris Hadfield sharing stories of life on board the International Space Station, and will.i.am joining us for a tour of the museum.

And it was a remarkable day when both Prof Stephen Hawking and Nobel prize-winner Prof Peter Higgs met in the Science Museum for our Collider exhibition opening.

This year a record breaking 450,000 young people visited the Science Museum on educational trips, or benefitted from its outreach programme, more than any other UK museum. Our Learning team (@SM_Learn) helps schools to plan their visits as well as sharing science demos and experiments that wow visitors every day.

Information Age has been made possible through the generous support of the Heritage Lottery Fund, BT (Lead Principal Sponsor), ARM (Principal Sponsor), Bloomberg Philanthropies and Google (Principal Funders).  Major Funders include the Garfield Weston Foundation, the Wolfson Foundation, the Bonita Trust and the Motorola Solutions Foundation. 

Additional support has been provided by Accenture (Connect Circle Sponsor) as well as the Institution of Engineering and Technology (IET), Cambridge Wireless (CW), the David and Claudia Harding Foundation and other individual donors.  The Science Museum would also like to thank the BBC for their assistance.

Revealing The Real Cooke and Wheatstone Telegraph Dial

John Liffen, Curator of Communications, blogs about an important discovery to be displayed for the first time in our new Information Age gallery opening 25 October 2014.

The Science Museum’s new Information Age gallery features over 800 objects spanning 200 years of telecommunications. Many have been on display before, but most are on show for the first time in this gallery. Among these are newly-acquired objects that show the latest developments in communications, while others are drawn from the Museum’s extensive collections.

One object in particular represents what we believe to be a major discovery.

The object in question is a large Cooke and Wheatstone electric telegraph dial, on loan from Kings College London since 1963. The object has never before been on public display because of doubts over its authenticity. However, I am now confident that it dates from 1837, the year that the practical electric telegraph was introduced in Britain.

Cooke and Wheatstone's Five Needle Telegraph © Science Museum

The newly-identified Cooke and Wheatstone Five Needle Telegraph, 1837 © Science Museum/ Science & Society Picture Library

Since 1876, the Museum has displayed a smaller five-needle instrument and has claimed it to be one of the original instruments installed at either Euston or Camden Town in 1837 when Charles Wheatstone and William Cooke demonstrated their electric telegraph system to the directors of the newly-opened London and Birmingham Railway.

I had long been suspicious of this because there were several technical features which just did not ‘add up’. All the history books repeated the Museum’s assertion about its originality and yet there was no real evidence to confirm it. I decided it was time to find out for certain.

The smaller Cooke and Wheatstone telegraph instrument, now believed to date from about 1849 © Science Museum/ Science & Society Picture Library

The smaller Cooke and Wheatstone telegraph instrument, now believed to date from about 1849 © Science Museum/ Science & Society Picture Library

I researched the whole story again, this time using only contemporary records such as Cooke’s letters, other manuscript documents and press reports. After much work, I concluded that the large dial was almost certainly one of the two 1837 originals, whereas the smaller instrument was likely to be one of the working models made for demonstration at a High Court hearing in 1850 when a rival company was disputing Cooke and Wheatstone’s priority in the invention.

The layout of the dial was Wheatstone’s idea. Any of the 20 letters on the dial can be indicated by making the appropriate pair of needles point to it. No knowledge of a code is needed and the dial is big enough for a crowd of people to see it working. Then as now, good salesmanship was needed to put over new technology.

Sheet 1 of the drawings for Cooke and Wheatstone’s 1837 electric telegraph  © Science Museum/ Science and Society Picture Library

Sheet 1 of the drawings for Cooke and Wheatstone’s 1837 electric telegraph © Science Museum/ Science and Society Picture Library

So why is this discovery so important?

The electric telegraph was the first practical use of electricity and from the 1840s onwards it transformed world communications. After a transatlantic telegraph cable was laid in 1866, messages between Europe and North America took only hours to arrive rather than weeks. Moreover, Cooke saw the emerging railway system as a major customer for the new technology. To operate safely, the railways needed to observe a timetable based on a standard time system.

View taken from under the Hampstead Road Bridge  looking towards the station at Euston Square, 1837

View taken from under the Hampstead Road Bridge looking towards the station at Euston Square, 1837 © Science Museum/ Science & Society Picture Library

The electric telegraph enabled Greenwich time to be distributed right across Britain, and within a few years local time, based on the times of sunrise and sunset, had been replaced by standard (Greenwich) time. The telegraph could also help catch criminals. In 1845 a message sent from Slough railway station to Paddington enabled murder suspect John Tawell to be identified, arrested, and in due course, executed.

After many years of doubt, I am now satisfied that one of the key inventions from the beginning of electric telegraphy has been authenticated and rightly takes its place in our new Information Age gallery.

Grand Designs For Information Age

Nick Rolls, Design Project Leader at Universal Design Studio, reflects on the design of the Science Museum’s new Information Age gallery.

Artist's impression of the Information Age gallery. Image credit: Universal Design Studio

Artist’s impression of the Information Age gallery. Image credit: Universal Design Studio

In early 2011, we were commissioned to work on the Science Museum’s new Information Age gallery.

From the outset, we knew this project would create a special challenge. With an impressive range of assets –  200 years of inventions, 800 unique objects and a vast gallery space measuring 2,500m2, this would be a unique gallery within the Science Museum.

One of the biggest challenges we faced was organising the huge empty space into a navigable gallery whilst giving each object and story a platform on which to shine.

We started with the largest and most impressive object of all – the aerial tuning coil from Rugby Radio Station, which we decided to place at the heart of the gallery.

Made from timber and webs of cables, this incredible object looks almost primitive in construction. This ambiguity made it a great tool for us to draw visitors into the centre of the gallery and make them question their preconceptions of modern communications. It is a world away from the common communication devices that spring to mind – mobile phones, micro-chips and digiboxes.

We learnt that the tuning coil was housed underneath a copper shroud – we think to dissipate heat and prevent the timber structure from igniting. This provided us with a material that resonated with the object’s history and a warm, reflective surface for the display. The coil is located where visitors can learn about the transmitter, signal and receiver.

From the centre you can see that the gallery is divided into six networks – each one telling stories from a specific section of communication technology. Placed around the outsides of the gallery, similar to the idea of a town square or plaza, we placed large double height display cases. These display structures are designed to house a vast array of objects.

Floorplan of the Information Age gallery. Image credit: Universal Design Studio

Floorplan of the Information Age gallery. Image credit: Universal Design Studio

These display structures serve several purposes. One function is to hold up the elevated walkway that encircles the gallery. More importantly, they allow visitors to engage with the incredible objects and stories told in each of the six networks. For this reason, they became known as storyboxes. To provide a varied experience, both a producer and a ‘voice’ were assigned to a storybox for each network, creating an installation of their conception.

The sheer quantity of objects on display within the gallery required meticulous planning of the space.

Stories with large numbers of objects fill showcases, which in turn create smaller spaces and routes throughout the gallery. A key concern was to ensure visitors knew where their attention should be focussed, especially in a gallery without a prescribed route.

We crafted a space that used solid forms and open apertures within the gallery, providing clear groups of objects along with vistas from one section to another.

Lastly, we designed a large encircling walkway that loops around the gallery. We introduced this to provide an overview of the space and an alternative perspective of the gallery. We felt it was important for visitors to understand the context of each story within the scheme of the gallery – allowing them to connect objects from one end of the space to the other.

Fundamentally, this is a gallery about incredible objects, people and stories. The format of the gallery plays a supporting role to these awe-inspiring exhibits. We hope visitors will enjoy experiencing the gallery through the space we have designed.

The Information Age gallery will be welcoming visitors from 25 October 2014. For more information visit sciencemuseum.org.uk/informationage.

Life on the Exchange – Stories From The Hello Girls

Sunday 5 October marks the 54th anniversary of the Enfield Exchange switching from manual to automatic exchange. To celebrate, Jen Kavanagh, Audience Engagement Manager, spoke to telephone operators from the 1950s and 1960s who shared their stories for the new Information Age gallery.

Today when we pick up the telephone, the digital automated system makes connecting a call quick and simple. But before this automatic system was introduced, telephone exchange operators had to help us on our way.

Manual Telephone Exchange Enfield. October 1960. Image credit: Science Museum / SSPL

Manual Telephone Exchange Enfield. October 1960. Image credit: Science Museum / SSPL

In the first half of the 20th century, women worked across the country, connecting calls and helping people get in touch with one another. The work required concentration, patience and an excellent manner, but the community created within these exchanges was fun and social once shifts had ended.

Women working on the Exchange at Enfield. Image credit: Science Museum / SSPL

Women working on the Exchange at Enfield. Image credit: Science Museum / SSPL

One of the last manual telephone exchanges was based at Enfield, north London. The Enfield Exchange’s switch from manual to automatic exchange, marked the end of an era in communication history. A section of the Enfield Exchange, donated to the Science Museum by BT, forms a part of the Museum’s collection, and will go on display in the new Information Age gallery.

To bring this amazing piece of history to life, we spoke to women who worked as telephone exchange operators in the 1950s and early 1960s, recording their stories through oral history interviews.

These former ‘hello girls’ gave their insight into how the exchange worked and what the job of an operator involved, but also shared wonderful stories about the friends they made and the social life they experienced once they’d clocked off.

A switchboard from the Enfield Exchange, which will go on display in the Science Musuem's new Information Age gallery. Image credit: Science Museum

A switchboard from the Enfield Exchange, donated to the Science Museum by BT, which will go on display in the new Information Age gallery. Image credit: Science Museum

One of these former operators, Jean Singleton, shared her thoughts on what made a good telephone operator, even if she didnít feel she was one!

‘How do I know? [Laughs] I wasn’t a good telephone operator, I was a naughty telephone operator! Well, first of all, you had to have a nice speaking voice, you couldn’t go there if you were a Cockney, speaking in a Cockney way, or a Northern way, you had to speak the Queen’s English, or King’s English as it was then. I suppose I had a decent enough voice. You had to be polite, and the customer sort of was always right, more or less, you know, you didn’t swear back at somebody if they swore at you, you weren’t allowed to do that sort of thing. If you found you were in trouble with a person on the telephone, you just passed them over to your supervisor, and they would deal with it.’

A close up view of the Enfield switchboard. Image credit: Science Museum.

A close up view of the Enfield switchboard. Image credit: Science Museum.

Another former operator, Rose Young, talked about some of the kit that was used whilst working on the exchange.

‘The first headsets were very heavy, you’d have a mouthpiece that came up in front of you on a plastic piece that had a tape on that you hung round your neck. And then the headpiece was like a metal band with a very heavy earpiece, you had one ear free so that you could hear what was going on around you and one that you covered, that covered your ear, but they were very heavy.’

Visitors to Information Age will have the opportunity to hear more from these incredible women through an interactive audio experience which will sit alongside the original section of the Enfield Exchange. We’ll just have to make sure we edit the cheeky bits!

Discover more about these stories when the Information Age gallery opens on Saturday 25 October.

Global Telephone Calls For All

David Hay, Head of Heritage & Archives at BT, reflects on the story of the first transatlantic telephone cable, TAT1, which opened 58 years ago today (25 September). The story will be covered in the Science Museum’s new Information Age gallery, which opens on 25 October.

Programme for the inauguration of the cable, 25 Sep 1956. Image credit: Courtesy of BT Heritage & Archives

Programme for the inauguration of the cable, 25 Sep 1956. Image credit: Courtesy of BT Heritage & Archives

When the first transatlantic telephone cable was launched on 25 September 1956, it was hailed as the start of the modern era of global communication. It was designed to link both the United States and Canada to the UK, with facilities for some circuits to be leased to other West European countries too.

The cable  provided 30 telephone circuits to the US and six to Canada. Most were for communication with the UK, the rest were connected through London to give direct access to Europe.

Transatlantic telephone cable operations, Oban, Scotland, 1855. Image credit: Courtesy of BT Heritage & Archives

Transatlantic telephone cable operations, Oban, Scotland, 1855. Image credit: Courtesy of BT Heritage & Archives

Undertaken by BT’s predecessor, the Post Office Engineering Department, along with the American Telegraph and Telephone Company, Bell Telephone Laboratories and the Canadian Overseas Telecommunications Corporation, the £12.5 million project took three years to complete. During this time the system was planned, manufactured and installed, which required developing new techniques for placing cable in deep waters.

Men pulling first segment ashore at Clarenville, Newfoundland,  Canada, 1955. Image credit: Courtesy of BT Heritage & Archives

Men pulling first segment ashore at Clarenville, Newfoundland, Canada, 1955. Image credit: Courtesy of BT Heritage & Archives

Telegraph links between the UK and the USA had been in existence from the middle of the previous century, but 1927 saw the first commercial radiotelephone service between the two countries. Initially 2,000 calls per year were made across the Atlantic, but the cost was prohibitive – in 1928 the basic rate for calls to New York was £9 for just three minutes.

It was only with the development of new equipment, such as coaxial cables with polyethylene insulation, carrier frequency equipment and broadband submerged repeaters, that transatlantic telephony by cable could be realised. These new technologies were developed just before and during World War Two. One key Post Office input was the development of subsea repeaters which were robust and reliable enough for areas around the coast and mainland Europe.

Cable operations at Clarenville, Newfoundland,  preparing to bring cable ashore, 1955. Image credit: Courtesy of BT Heritage & Archives

Cable operations at Clarenville, Newfoundland, preparing to bring cable ashore, 1955. Image credit: Courtesy of BT Heritage & Archives

Apart from the short shore ends, the whole of the transatlantic telephone cable was laid by the Post Office cable ship Monarch. It was the only such ship that was capable of carrying the 1,500 nautical miles of cable which had to be laid in one piece across the deepest part of the Atlantic, between Oban in Scotland and Clarenville, Newfoundland. The cable then crossed over the the Cabot Strait to Sydney Mines, Nova Scotia.

Cable route map from Oban to Clarenville and topographic diagram of the ocean floor. Image credit: Courtesy of BT Heritage & Archives

Cable route map from Oban to Clarenville and topographic diagram of the ocean floor. Image credit: Courtesy of BT Heritage & Archives

At the inaugural ceremony at  Lancaster House in London on 25 September 1956, the service was opened by the Postmaster General, who spoke to the Chairman of AT&T calling from New York, and to the Canadian Minister of Transport.

During its first year of service, TAT1 carried twice as many calls as the radio circuits had done in a year – about 220,000 calls between Britain and the United States, and 75,000 between Britain and Canada – generating £2 million to be shared between the three countries.

In 1956, the first transatlantic telephone cable was regarded as a major technological achievement, not least as a base for future research and improvements. It laid the path for further developments such as sophisticated digital fibre optic transatlantic cables, which can pass tens of thousands of calls simultaneously.

Sectioned submerged repeater for TAT-1 the first trans-Atlantic telephone cable, designed at the Post Office Research Station at Dollis Hill, made by Standard Telephones and Cables Limited, Woolwich, London, England, 1956. Image credit: Science Museum

Sectioned submerged repeater for TAT-1 the first trans-Atlantic telephone cable. Credit: Science Museum

BT is excited to be Lead Principal Sponsor of the new Science Museum’s Information Age gallery, where the story of TAT1 and transatlantic communications is told. Our purpose as a company is to use the power of communications to make a better world. We have been involved in every significant development in telecommunications since the birth of the technology in 1837 with the invention of the electric telegraph in the UK

It was important for us to be able to support Information Age in telling the stories of how communications technology has changed the world for the better. And we are delighted to have donated so many of the objects on display in the gallery from our own heritage collection.

Information Age opens to the public at the Science Museum in London on 25 October 2014. For more details visit sciencemuseum.org.uk/informationage.

Sending messages across the Atlantic: 156 years on from the first transatlantic cable

Chloe Vince, Science Museum Volunteer, tells the dramatic story of the laying of the first transatlantic cable, one of the highlights of our new Information Age gallery, which opens in October.

If you needed to send a message to North America, you wouldn’t think twice about drafting an e-mail, hitting ‘send’ and your message arriving in the recipient’s inbox almost instantly.

In 1858, however, communications were much slower. In those days, a message would take up to 10 days to arrive. This was the time it took for a ship to travel across the Atlantic.

Specimens of the first Atlantic submarine cable, 1858. Credit: Science Museum / SSPL.

Specimens of the first Atlantic submarine cable, 1858. Image credit: Science Museum / SSPL.

Things changed in the August of 1858, when the first message was sent via a transatlantic telegraph cable, which ran from the east coast of North America to the West Coast of Ireland. Messages could now be sent in a matter of minutes, dramatically changing the history of transatlantic communication.

A section of the original transatlantic cable, encrusted with marine growth. Image credit: Science Museum.

A section of transatlantic cable, encrusted with marine growth. Image credit: Science Museum / SSPL.

Experimenters had been investigating batteries and electromagnetism to develop a communication system since the early 19th century. The first practical system was executed successfully in the UK by the partnership of Charles Wheatstone and William Cooke. They used an electrical current to deflect magnetic needles which could be made to point to letters on a backboard. By the time of the 1858 transatlantic cable, their system had been developed and widely adopted for railway signalling across Britain.

Cooke and Wheatstone's Double Needle Telegraph, 1844. Image credit: Science Museum / SSPL

Cooke and Wheatstone’s Double Needle Telegraph, 1844. Image credit: Science Museum / SSPL

American experimenter Samuel Morse (of Morse code fame), was also working on developing telegraphy. His system used a single circuit to send an electric signal along a wire to a receiver at the other end. Instead of using needles indicating letters of the alphabet, Morse’s system used a code of dots and dashes to spell out words. Morse received funding to use this technology to set up a telegraph system between Washington and Maryland in the USA. The telegraph became an instant success. People relished the ability to send and receive information much more quickly than before, and as a result the telegraph system expanded across America and Europe.

Morse key, c 1850-1870. Image credit: Science Museum / SSPL

Morse key, c 1850-1870. Image credit: Science Museum / SSPL

Soon after, in 1856, the Atlantic Telegraph Company was set-up with the objective of laying a cable across the Atlantic Ocean, connecting America with Europe. Luckily, opinions of the technology were high, which meant shares in the company sold quickly. As soon as enough money was raised, the first transatlantic cable, consisting of seven copper wires and recorded as weighing one ton per nautical mile, was laid from America to Ireland.

(Lord Kelvin) Thomson's mirror galvanometer (land type) used at Valentia Island end of the original Atlantic cable in 1858. Made by White & Barr, Glasgow. Image credit: Science Museum / SSPL.

(Lord Kelvin) Thomson’s mirror galvanometer (land type) used at Valentia Island end of the original Atlantic cable in 1858. Made by White & Barr, Glasgow. Image credit: Science Museum / SSPL.

Queen Victoria sent the first official transatlantic telegram. She sent a message to US president James Buchanan congratulating him ‘upon the successful completion of this great international work.’  The message travelled through 2,500 miles of cable and took 16 hours, a dramatic improvement on the 10 days it would have taken beforehand. The same message was repeated back to Valencia in Ireland in only 67 minutes.

Unfortunately, the success enjoyed by this first transatlantic cable did not last. There were problems with the cable, and within a month it had failed completely. However, the desire for speedy transatlantic communication was great enough to attract more funds to try again.  A further attempt in 1866 was successful.

The consequence of this new form of communication was huge. By the end of the 19th century, new technologies began to emerge. The telegraph was replaced by telephony and these days we rely on the internet for high speed communication. However, the telegraph was the first technology that allowed us to communicate quickly and reliably over long distances, and acted as a turning point in communication history.

You can explore more about the laying of the first transatlantic cable in our Information Age gallery, which opens on 25 October.

 

Simon Says… “be smart”

Charlotte Connelly, Content Developer, blogs about the IBM Simon, the first smartphone to go on public sale.

Twenty years ago, on 16 August 1994, the Bellsouth IBM Simon hit the American market. Weighing in at a hefty half a kilogram, and looking rather like a grey brick, the Simon was advertised with a not-so-snappy slogan declaring it to be “The World’s First Cellular Communicator”.

Although the slogan was a bit of a mouthful, the Simon really did break new ground. It took some of the best technology that the handheld computing world had to offer – personal digital assistants (PDAs) were all the rage in the early 1990s – and combined it with a mobile phone. 

With a stylus and touch screen, Simon’s users had all sorts of software applications, or apps, at their fingertips. They might sketch a drawing, update their calendar, write notes on a document, or send or receive a fax.

The Simon was, in effect, the world’s first smartphone; a device that could make calls and be programmed to do a wide range of other things. The built-in features could even be expanded by plugging in memory cards – not quite an app store, but long similar lines.

The Science Museum’s Simon was owned by a project manager for a construction company in the United States. He found the Simon invaluable because his office could fax him site plans to review. He could check them wherever he was and fax them back saving hours of shuttling plans physically around the country.

Despite having some loyal users, and after selling around 50,000 units, the Simon was withdrawn from sale after only 6 months. There were still some key pieces of the puzzle missing to enable a device like the Simon to become really successful. In 1994 the web was in its infancy, so the idea of downloading apps was not practical.

The mobile internet, accessible through mobile phones, was virtually non existent – explaining why fax was a key feature of the Simon. The hardware was also limited. With a battery that only lasted an hour in ‘talk mode’ it wasn’t practical to rely on the Simon to keep you in touch all day long. To top it all off, at $899 the Simon was simply too expensive for most people to justify.

Despite its imitations and brief foray in the marketplace, the Simon brought together many of the key things that underpin today’s smartphones. The next big splash in the market came over a decade later. By then, 3G mobile phone networks were available, online app stores were a genuine possibility and microprocessor technology had advanced enough to pack a really powerful computer into a small handheld device.

The launch of the iPhone 3G marked a turning point, and mobile phone companies saw the amount of data being used spike almost over night. (Source: Science Museum)

The IBM Simon will go on display in the Science Museum’s Information Age gallery which opens on 25 October 2014.

The Historic Heart of our Information Age Gallery

Dan Green, Content Developer, reflects on the incredible story of the Rugby Tuning Coil, one of the star objects of the Science Museum’s brand new Information Age gallery which opens in October.

The aerial inductance coil from Rugby Radio Station will soon have a new home at the Science Museum – see it being installed in the video below.

Measuring 6 metres high and resembling a series of giant spiders’ webs, this monumental coil is a powerful reminder of the invisible infrastructure which supports our desire to communicate.

Based at Rugby Radio Station, where it was housed in a huge cathedral-like room, the coil played a vital role in tuning a huge radio transmitter that sent out very low frequency signals. It was part of a huge system that linked the transmitter to the aerial masts, enabling messages to be sent and telegrams to be transmitted. During its long life, Rugby Radio held a huge personal resonance for many individuals, connecting people to each other, to the world and to home.

The enormous Rugby Tuning Coil being installed inside the Information Age gallery. Image credits: Science Museum

The enormous Rugby Tuning Coil being installed inside the Information Age gallery. Image credits: Science Museum

Rugby Radio Station began transmitting very low frequency signals on 1 January 1926 using the call sign GBR. Once the world’s most powerful radio transmitter, its very low frequency waves could follow the curvature of the Earth to travel very long distances, enabling one-way communication to Britain’s Empire. It transmitted wireless telegraph messages from the British Foreign Office, standard time signals from Greenwich, news bulletins, personal telegrams and Christmas greetings.

Although first hailed as a matter of national pride, in later years Rugby Radio Station was a hidden secret that played an important role in the Cold War, as its very low frequency signals could be picked up by submarines.

Archive image of the Rugby Tuning Coil. Image credits: Cable & Wireless Communications 2014.  By kind permission of the Telegraph Museum Porthcurno.

Archive image of the Rugby Tuning Coil. Image credits: Cable & Wireless Communications 2014. By kind permission of the Telegraph Museum Porthcurno.

Godfery Dykes, one of many submarine communication operators, sat in a claustrophobic communications cabin, hunched over the radio, headphones on, sick bucket between his legs, receiving the Morse code signals. His role was to write down in pencil the dots and dashes coming through at the incredible speed of 30 words a minute, a rate that was undecipherable to the untrained ear. The dots and dashes would then be decoded and the messages delivered:

‘GBR meant a lot to us and we used the letters GBR in many ways. At the start of our patrol I used to think Goodbye BeRyl (my wife) …simply to hear Rugby’s call sign meant to me all those I loved back in the UK were still safe. I well remember moments of excitement on coming shallow to periscope depth after many hours down deep, watching the depth gauge creep slowly past 150 feet, 125, feet, 100 feet and then 75 feet, faint at first, that most lovely sound started to fill my ears – God Bless Rugby, GBR’

On 31 March 2003, 77 years after it transmitted its first Morse message, Rugby Radio station ceased broadcasting its very low frequency signals around the world. A year later, the twelve 250m high masts that radiated out Rugby’s signals were demolished, marking the end of an era. Former station manager Malcolm Hancock was invited to detonate the first explosion:

 “They had been there for so long and the red lights (on top of the masts) had always been there whenever you came home. That is what all the local people in Rugby say, ‘Oh yeah, the thing we’re going to miss is not seeing the red lights saying – oh we’re nearly home now’”.

The coil was donated to the Science Museum by BT Heritage and Archives soon after the decommissioning of Rugby Radio Station. From 25 October, you can see the Rugby Tuning Coil displayed in public for the first time at the centre of the Information Age gallery, as reflected in this artist’s impression.

An artist's impression of the Information Age gallery. Image credits: Science Museum / Universal Design Studio

An artist’s impression of the Information Age gallery. Image credits: Science Museum / Universal Design Studio

To discover more visit sciencemuseum.org.uk/informationage or follow the conversation online via #smInfoAge

How the 1967 Wimbledon Championships made Broadcasting History

Chloe Vince, a volunteer working on our new Information Age gallery, looks back at the first colour TV broadcast.

Chances are that if you haven’t got tickets to the Wimbledon finals this weekend (and lucky you if you have!) you will instead be watching the match on a colour television. This may not seem particularly momentous, but it actually has real historic significance. It was 47 years ago, in 1967 that the Wimbledon Tennis Championships became the first ever UK television programme to be broadcast in colour.

The Championships were broadcast on BBC 2, which initially became the only channel to broadcast in colour, showing just five hours of colour TV a week. This transition from black and white to colour was a huge step-forward in broadcasting technology; however it was only appreciated by a few as there were less than 5,000 colour TV sets in circulation at the time. One of these was the Sony Trinitron TV, and this one (shown below) is part of the Science Museum collection.

The Sony Trinitron TV was one of the first TV sets to broadcast in colour. This model will be on display in the ‘Information Age’ gallery opening later this year.

The Sony Trinitron TV was one of the first TV sets to broadcast in colour. This model will be on display in the ‘Information Age’ gallery opening later this year. Credit: Science Museum / SSPL

The Sony Trinitron TV displayed colour by use of a ‘single-gun three-cathode picture tube’, capable of broadcasting separate red, green and blue signals (RGB) in succession. This technology was first developed by John Logie Baird, a Scottish engineer well-known as the inventor of the world’s first television. He demonstrated the first colour television publicly in 1928, but due to the war suspending the BBC television service, and ultimately ending his research, the development of this technology for broadcasting was delayed.

When the Wimbledon Championships did eventually become the first colour broadcast in 1967, the interest in colour TV quickly gained momentum. Viewers cited a greater feeling of realism when watching in colour and the broadcasts aim to exploit this interest by seeking more programmes that would benefit in colour, such as the snooker programme Pot Black, and children’s TV programme Thunderbirds. Shortly after Birds Eye Peas became the first colour advertisement. By mid-1968 nearly every BBC2 programme was in colour. BBC1 and ITV quickly followed and were also regularly broadcasting in colour by 1969.

However, broadcasters still made programmes in black and white for some time, due to the large expense of the TV sets, as well as the increased cost of a colour TV license (£10 in comparison to £5 for a black and white license) which made the demand for colour TV sets increase more slowly. By 1969 there were still only 100,000 in circulation but viewers soon caught up and by 1972 there were over 1.6 million in the UK.

The Wimbledon Championships are still acting as a landmark televised event today, as in 2011 it became the first TV programme to be broadcast in 3D. However, history repeated itself, as only a few viewers could appreciate the new technology due to the small number of 3D TV sets owned in the UK. So how long do you think it will be until we are all watching the Wimbledon Championships in 3D?

You can discover more about the history of communication technologies in a new Science Museum gallery, Information Age, which opens later this year.