Category Archives: Inventions

The Art of Boiling Beer: 60 years of the Bubble Chamber

Ahead of November’s opening of the Collider exhibition, Content Developer Rupert Cole explains how beer was used for cutting-edge particle physics research. 

Late one night in 1953, Donald Glaser smuggled a case of beer into his University lab. He wanted to test out the limitations of his revolutionary invention: the bubble chamber.

Previously, Glaser had only tried exotic chemical liquids in his device. But now his sense of experimental adventure had been galvanised by a recent victory over the great and famously infallible physicist Enrico Fermi.

Donald Glaser and his bubble chamber, 1953. Credit: Science Museum / Science and Society Picture Library

Donald Glaser and his bubble chamber, 1953. Credit: Science Museum / Science and Society Picture Library

Fermi, who had invited Glaser to Chicago to find out more about his invention, had already seemingly proved that a bubble chamber could not work. But when Glaser found a mistake in Fermi’s authoritative textbook, he dedicated himself to redoing the calculations.

Glaser found that, if he was correct, that the bubble chamber should work with water. To make absolutely certain he “wasn’t being stupid”, Glaser conducted this curious nocturnal experiment at his Michigan laboratory. He also discovered that the bubble chamber worked just as well when using lager as it had with other chemicals.

There was one practical issue however, the beer caused the whole physics department to smell like a brewery. “And this was a problem for two reasons,” Glaser recalled. “One is that it was illegal to have any alcoholic beverage within 500 yards of the university. The other problem was that the chairman was a very devout teetotaler, and he was furious. He almost fired me on the spot”.

On 1st August 1953, 60 years ago this Thursday, Glaser published his famous paper on the bubble chamber – strangely failing to mention the beer experiment.

Glaser’s device provided a very effective way to detect and visualise particles. It consisted of a tank of pressurised liquid, which was then superheated by reducing the pressure. Charged particles passing through the tank stripped electrons from atoms in the liquid and caused the liquid to boil. Bubbles created from the boiling liquid revealed the particle’s path through the liquid.

Particle tracks produced by Gargamelle indicating the discovery of the neutral currents, 1973. Credit: CERN

Particle tracks produced by Gargamelle indicating the discovery of the neutral currents, 1973. Credit: CERN

One of Glaser’s motivations for his invention was to avoid having to work with large groups of scientists at big particle accelerators. Instead, he hoped his device would enable him to study cosmic rays using cloud chambers in the traditional fashion; up a mountain, ski in the day, “and work in sort of splendid, beautiful surroundings. A very pleasant way of life – intellectual, aesthetic, and athletic”

Ironically, as the bubble chamber only worked with controlled sources of particles, it was inherently suited to accelerator research, not cosmic rays. Soon the large accelerator facilities built their own, massive bubble chambers.

Design drawings for CERN’s Gargamelle bubble chamber. Credit: CERN

Design drawings for CERN’s Gargamelle bubble chamber. Credit: CERN

Between 1965-1970 CERN built Gargamelle – a bubble chamber of such proportions that it was named after a giantess from the novels of Francois Rabelais (not the Smurfs’ villain). Gargamelle proved a huge success, enabling the discovery of neutral currents – a crucial step in understanding how some of the basic forces of nature were once unified.

This November you’ll have the chance to see up close the original design drawings for Gargamelle, and much more in the Collider exhibition.

Generating Ideas: drawing inspiration from the Science Museum

Inventor in Residence Mark Champkins writes about drawing inspiration from the Science Museum. A selection of Mark’s products can be bought from the Science Museum. 

Coming up with ideas and inventions “on demand” is tricky. I work as the Science Museum’s Inventor in Residence, and it is my job to generate a stream of products that are interesting to the science-savvy, whilst engaging to those new to the Museum. If possible the products should also be wildly popular and generate lots of income. No pressure then.

Fortunately, the Museum provides an incredibly fertile space for generating ideas. Though my ideas tend toward the quirky, rather than world-changing, there are so many examples of ingenuity, insight and inventiveness, it’s hard not to be inspired. But where to start?

It’s not widely known that the Science Museum is home to just 5% of the Museum’s collection. The majority is tucked away in Blythe House in London, and at Wroughton, a former RAF airbase in Wiltshire. However, as the Science Museum is a showcase for the most iconic items in the collection, for me, it is the richest source of ideas.

The Wroughton site houses large objects in aircraft hangars. Image credit: Science Museum

Our Wroughton site houses large objects in aircraft hangars. Image credit: Science Museum

I’m particularly drawn to the Making the Modern World gallery. In many ways it is the centerpiece of the Science Museum. Located on the ground floor, it exhibits objects chronologically, on a timeline starting in the 1770′s in the heyday of the Industrial Revolution, and ending with the Clock of the Long Now, a clock mechanism intended to keep time for 10,000 years. Walking through the gallery, is walking through the recent history of human development.

Visitors in the Making the Modern World gallery. Image credit: Science Museum

Visitors in the Making the Modern World gallery. Image credit: Science Museum

There are a couple of items in Making the Modern World that have directly inspired new products. One of the first glass cases that you encounter in the gallery contains what looks like a whisk with an accompanying pot. In fact it is the apparatus, made by James Prescott Joule, that defines the standard unit of energy, or “Joule”. Filling the pot with water, a “Joule” of energy is defined as the energy required to whisk the water until it has raised the temperature of the water by one degree.

Beauty in the Making

Beauty in the Making: Telling the story of how materials are manufactured, including an aluminium water bottle

This device got me thinking about how SI units are defined, and of measurement in general, and led to the creation of the Word Count Pencil, a pencil that has a scale printed along it’s length, to estimate the number of words you have written as the pencil wears out. A Gramophone in one of the cases along the side of the gallery inspired the iGramo, non-electrical method to amplify iPhones. Electro-magnets in the central glass cases, inspired my Levitating Cutlery idea. A sample of the first pure aluminium inspired me to design an aluminium water bottle that is decorated with an explanation of how the material is extracted, refined, and formed into the bottle.

Often, as I sit amongst the items in the gallery, trying to think up new product ideas, is gratifying to imagine all the inventors and scientists whose work surrounds me, doing likewise. Conjuring up new inventions and ideas using the power of their imagination. It makes me want to think harder and try to achieve more, and I find that profoundly inspiring.

I would urge anyone tasked with generating ideas, or impressed by ingenuity to treat themselves to a trip to the Science Museum. You never know what you might come up with!

T. Alva Edison and his Amazing Phonograph!

Jared Keller, a researcher and former Science Museum Explainer, discusses some of our hidden objects and the science behind them. 

Today we’re looking at the Sound Section of Launchpad and one of my favourite exhibits, “Sound Bite”. If you’re a bit rusty on your Sound Bite science, HERE is an old BBC refresher course on the principles of sound travelling through a medium/solid.

Launchpad’s World Famous ‘Sound Bite’ – Credit: Man Chiwing

The important thing to remember is that sound waves can travel through a solid material like a metal rod the same as they can through the air. Proof of this lies in the fact that you can feel the rod vibrating if you pinch it with your fingers. When you bite down, those vibrations are passed up through your teeth, through your jaw, and up into your ear where they vibrate the same bones in the inner-ear that normally vibrate from sound waves in the air.

Edison stares intently at his new invention - Credit: Science and Society Picture Library

Edison stares intently at his new invention – Credit: Science and Society Picture Library

In 1877 a very ‘bright’ man named Thomas Alva Edison put this principle to use in what he called a phonograph. Whereas the more familiar gramaphone ‘records’ are flat two-sided discs of vinyl, Edison’s original phonographs used 10 cm cylinders made of soft tin-foil (and later wax).

Edison's original phonograph cylinders - on display in the Secret Life of the Home gallery

Edison’s original phonograph cylinders – on display in the Secret Life of the Home gallery – Credit: Science and Society Picture Library

Whatever you call them, the science is simple: he knew, just like you, that sound travelling through a metal causes it to vibrate. His great insight, was in realising that vibrations in a metal could then be turned back into vibrations in the air – what we normally hear as sounds!

The first words spoken into Edison's new phonograph recorder? ... "Mary had a little lamb" - Credit: Science and Society Picture Library

The first words spoken into Edison’s new phonograph recorder? … “Mary had a little lamb” – Credit: Science and Society Picture Library

In the drawing above you can see Edison speaking into one of his phonographs. As he spoke into the cone and tube, it captured his voice and funneled it down until it was intense enough to vibrate a small, incredibly sharp piece of metal. As the metal vibrated with the sound of his voice, the soft tin cylinder was rotated underneath the vibrating tip which caused the tip to cut into the tin. If you want to see a real phonograph player and its cylindrical record, simply head to the ‘Secret Life of the Home’ gallery in the basement.

Closeup of the grooves on a phonograph cylinder - Credit: Science and Society Picture Library

Closeup of the grooves on a phonograph cylinder – Credit: Science and Society Picture Library

Edison knew that once the vibration of his voice had been carved into the soft tin, passing another tip through those grooves in the now hardened tin would make the needle vibrate in exactly the same way! All he had to do then was take those vibrations and amplify them so they were loud enough to be heard by the human ear. But being the veteran Sound Biters that we are, we know that if Edison had simply attached small metal rods to that vibrating tip we could bite down on them and let the vibrations pass up our teeth, through our jaws, and up to our ears, just like with Sound Bite!

A dapper Edison pumps music directly into our skulls! – Credit: Matteo Farinella

Though maybe Edison was right: listening to a song through the air is much more satisfying than biting down on a metal rod!

Hempcrete Store Wins Sustainability Awards

The Science Museum has been honoured for its green credentials this month by scooping two prestigious awards for its new Hempcrete storage facility at Wroughton.

The innovative storage building which is made from hemp and lime, was honoured for its sustainable design by winning the Sustainability Award at the Museums and Heritage Awards – beating stiff competition from the BP Showcase Pavilion at the Olympic Park and the Museum of Surfing.

The Science Museum won in the Sustainability category at the Museums and Heritage Awards. Picture credit: M&H Show

The Science Museum won in the Sustainability category at the Museums and Heritage Awards. Picture credit: M&H Show

The project was also recognised earlier this month at the Greenbuild Awards, where it won the Best Workplace New Build category – fending off competition from organisations such as Co-op and Network Rail.

Like many other national museums, the Science Museum only displays 8% of its collections to the public – there is just not enough space to display any more. The other 92% of the collection is housed in storage facilities. One of these storage sites is a former airfield near Swindon, which holds 16,000 objects including large scale items such as aeroplanes, trains and cars.

The Wroughton site houses large objects in aircraft hangars. Image credit: Science Museum

The Wroughton site houses large objects in aircraft hangars. Image credit: Science Museum

The Hempcrete facility was designed as a radical new solution to protecting objects including horse-drawn carriages, fine art works, wooden ship models and paper archives. Many of these objects are sensitive to changing climate conditions such as light, heat and moisture so providing the right environment is essential to prevent deterioration.

The solution was to create a zero-carbon storage building from hemp and lime – low carbon natural materials which provide temperature and humidity buffering and ensure that the museum’s collections are maintained for future generations.

The Hempcrete store is a new solution to preserving the museum's sensitive objects. Picture credit: Science Museum

The Hempcrete store is a new solution to preserving the museum’s sensitive objects. Picture credit: Science Museum

Matt Moore, Head of Sustainable Development, Science Museum said “I’m delighted that the Hempcrete project has won these awards and been recognised by the museums and building sectors. The project is part of a wider remit to reduce emissions across all our sites. Using science and engineering to look after the Science Museum collections seems to be a perfect solution to one of our biggest challenges.”

Hempcrete is a material made from hemp fibre and lime mortar mixed and moulded in precast, pre-dried cassettes to form Hemclad panels. The material is typically used to provide sustainable building materials for housing and industrial building sectors.

As well as protecting objects from deterioration, the Hempcrete facility allows the museum to reduce carbon emissions and make significant energy savings. The new store will be used to house valuable objects from the Science Museum as well as those of its sister museum – the National Railway Museum.

The Dambusters, Barnes Wallis and the Bouncing Bomb

Seventy years ago, in the early hours of the 17th May 1943, 8 Lancaster bombers flew back to RAF Scampton and into the history books as part of the daring Dambusters raid. The 617 squadron, formed only two months earlier, had successfully destroyed two dams (Mohne and Eder), and damaged a third (Sorpe) using the ingenius invention of Barnes Wallis – a four tonne bouncing bomb.

Shortly before he died, Wallis donated the bulk of his papers to the Science Museum, including design notes, photographs, correspondence and reports relating to his work. We’ve picked out a few images below to tell the story of the bouncing bomb.

Taken from Wallis' report on the proposed method of attaching dams. The diagram shows the path of the Spherical Surface Torpedo (bouncing bomb) . Image credit: BAE Systems/SSPL

Taken from Wallis’ report on the proposed method of attaching dams. The diagram shows the path of the Spherical Surface Torpedo (bouncing bomb) . Image credit: BAE Systems/SSPL

Even before the war begin, the UK Government had identified the three German dams as potential targets, but had no suitable weapons to launch an attack. Wallis’ idea is simple to explain, but was far more complex to put into action: bounce a 4 tonne rotating bomb across 400m of water until it hits the dam, sinks and explodes.

Equipment used to hold and spin the bouncing bombs. Image: BAE Systems/SSPL

Equipment used to hold and spin the bouncing bombs. Image: BAE Systems/SSPL

Bouncing bombs allowed Wallis to completely avoid the torpedo nets protecting the dam. However, to get the bounce just right, the Lancaster bombers needed to approach the dams flying just 20m above the water while traveling at 230mph (more on how this was done can be read here).

At exactly 389 metres from the dam wall – calculated by triangulating with the dam’s towers – the bombs were released. Wallis calculated that backspin would stabilise the bombs in ‘flight’, help create the bounce and forced the bomb to cling to the face of the dam once it sank.

Bouncing bomb trials. Film stills signed by Barnes Wallis.

Bouncing bomb trials. Film stills signed by Barnes Wallis. Credit: BAE Systems/SSPL

Even with practice runs, it took many attempts to bounce the bombs correctly, and trials with live ammunition were only conducted three days before the raids. To this day, the skill and bravery of the 617 squadron (113 men in total), who flew low over enemy territory under the cover of darkness, remains breathtaking.  

After the war, Wallis continued his work on aircraft design (before WWII he was a pioneer of geodetic design, used to build the largest airship of its time, the R100), designing “swing wing” aircraft suited to hypersonic flight. 

Barnes Wallis with his hypersonic aircraft model

Barnes Wallis with his hypersonic aircraft model. Credit: Science Museum/SSPL

Our Senior Keeper, Andrew Nahum, was recently interviewed about Barnes Wallis, his bouncing bomb and other work. The full interview can be read here.

A page from Babbage’s scribbling book with notes on his automaton for playing noughts and crosses or ‘tit tat to’, from a collection of over 20 notebooks held at the Science Museum Library & Archives in Wroughton.

The ingenious inventions of Mr Babbage!

By Cate Watson – Content Developer on the Babbage display

Although Charles Babbage is best known for his calculating engines, plans of which are now on display in the Computing gallery, he was a life long inventor with a passion for improvement.

As a 16 year old Babbage nearly drowned when he trialed his newly invented shoes for walking on water. This setback failed to discourage him and Babbage’s inventions ranged from designs for a locomotive ‘cow catcher’, an automaton for playing noughts and crosses, a ‘black box’ recorder for monitoring railway tracks and ‘speaking-tubes’ linking London and Liverpool among many other ideas.

Cartoon based on Babbage’s design for a ‘cow-catcher’.

Cartoon based on Babbage’s design for a ‘cow-catcher’. Image credit: Science Museum / Science & Society Picture Library

Babbage fervently believed that new inventions should be freely available to all – when he constructed the first known opthalmoscope in 1847 for internal eye examinations he refused to patent it. The credit went to Herman von Helmhotz 4 years later instead.

You can see another of Babbage’s inventions in the Museum – an occulting light mechanism to help with ship navigation. Ship captains used lights on shore to steer by but the increasing number of lights on the coast led to confusion. Babbage designed a light with mechanical shutters to create a unique flashing signal for ships.

A page from Babbage’s scribbling book with notes on his automaton for playing noughts and crosses or ‘tit tat to’, from a collection of over 20 notebooks held at the Science Museum Library & Archives in Wroughton.

Frustratingly for Babbage, this invention, like many of his ideas, found no favour at home. It did however sufficiently impress the Russians, who used the principle of his signalling lights against the British in the Crimean war.

Babbage’s foresight wasn’t limited to his inventions. He predicted the end of the coal mines and recommended tidal power instead, commenting that if posterity failed to find a substitute source of power it deserved to be ‘frostbitten’!

See more of Babbage’s inventive drawings in a new display in the Science Museum’s Computing gallery.

Enjoy Christmas all year round with a Christmas tent

Visitor Inventions – What they really wanted for Christmas

“Wow! It’s what I always wanted….” is the standard response when you receive presents from your friends and family.  But was it really?  Whether you received the latest gadget, perfume or socks – some of our visitors dream of receiving jetpack boots, a time machine and a walking toilet.

Below is a selection of inventions that our visitors came up with when in the Launchpad gallery.  Click on any image for larger pictures.

Explainer Fact:  The Museum is only closed 3 days a year – 24th-26th December

Bio-Bauble – a biodegradable transparent bauble containing a seedling Christmas tree

Inventing the Future of Christmas

By Mark Champkins

As Inventor in Residence, I was given the task of coming up with some inventions that we might see in the future at Christmas time.

A good starting point was to think about all the problems and minor annoyances about Christmas, then to try to think of solutions. It turns out there are plenty of Christmas gripes, from pine needles dropping all over the carpet, to eating Brussel sprouts and wrapping countless presents!

On the first weekend of December, I bought and installed a Christmas tree in my living room. I have been making a range of products for the Science Museum called “Beauty in the Making” that describe how and where products have been manufactured, before they make it into our homes.

Beauty in the Making

Beauty in the Making: Telling the story of how materials are manufactured

I started to wonder about where all the other things around me had come from including my new Christmas tree. Where had the tree been growing before it had been chopped down? Could it ever be replaced? I then struck upon the idea of the Bio-Bauble – a biodegradable transparent bauble containing a seedling Christmas tree, complete with soil and fertiliser that could be planted to grow a new Christmas tree.

Bio-Bauble – a biodegradable transparent bauble containing a seedling Christmas tree

The next problem I thought about solving was wrapping up presents. My solution came when I was thinking about a more robust alternative to wrapping paper that could be reused. Initially, I wondered whether Christmas wrapping cloth might catch on. Then I remembered using some vacuum pack bags to store away a duvet. It occurred to me that if these were produced in opaque with Christmas patterns, they would make a great way of wrapping things quickly and could be reused again. The result was Vac-Pac-Wrapping. I’ve tested the idea and it works really well!

Vac-Pac-Wrapping: The future of Christmas Wrapping?

Another invention idea was inspired by the feeling of excitement I used to feel as a child as the presents began to build up underneath the Christmas tree. Before opening them, my brothers and I would subject our presents to some rigorous scientific tests to figure out what was inside. Heaviness was usually a good sign!

Guess the Gift kit: Tools to investigate what a present might be

So I came up with the Guess the Gift kit. It comprises a range of tools that can be used to interrogate what a present might be, and after Christmas can be used to explore other mysteries! These include a magnet, a set of scales, a torch, a magnifying glass and dental mirror.

It’s hard to predict whether these inventions will catch on in the future, but I’m already thinking about the inventions next year might bring.

Mark Champkins is the Inventor in Residence at the Science Museum

Motorola 8800X

SMS turns 20 with a touch of festive cheer

By Charlotte Connelly, Content Developer – Making Modern Communications

Every time we invent a new communications device, somebody has to decide what the first every message will be. Sometimes this is planned in advance and has a weighty meaning. For example, when the first American telegraph line was officially opened in 1844, the first message sent by Samuel Morse asked: What hath God wrought?

On other occasions, the inventors of the technology were taken by surprise, such as Alexander Graham Bell. His first words were less majestic: Mr Watson, come here, I want to see you.

So, 20 years ago today, when 22-year-old British engineer, Neil Papworth, was trying out Vodafone’s new SMS system out for the first time, what did he send? Well, as it was nearing Christmas, there was really only one choice: MERRY CHRISTMAS

Motorola 8800X

This phone, the Motorola 8800X, was launched in 1992. The same year that the first SMS message was sent. Source: Science Museum

The first commercial SMS (short message service) system went into operation in 1993, after several years of tinkering with various text based messaging services. Mobile phone companies didn’t rush to get text messaging out there because they didn’t think anybody would be interested in sending such short messages.

In a way they were proved right, because it wasn’t until the late 1990′s when the first pre-pay phones came into use that texting really took off. Lots of users found texting to be a cheap way of sending a snippet of information, and by 2002 we were sending 2 million texts an hour in the UK alone.

Nokia 3310

You might recognise the Nokia 3310, it was launched in 2000 at around the time that sending text messages was really getting big. Source: Science Museum / Science and Society

The number of texts being sent around the world is still growing, but as our phones become the centre of our communications world, with social networks and email as well as texting and calling, the humble text message is going to have to work hard to stay in use.

Swiss Army Octopus - the perfect camping buddy

Visitor Inventions – Animals

They say the UK is a country of animal lovers and judging by what our visitors have drawn, it is most certainly true!  Why use a standard Swiss Army knife when a friendly octopus can help you instead?  Or why should we continue to burn fossil fuels when hamsters are happy to power devices for us?

We give our visitors the tools (colouring pencils and paper) to doodle down any ideas they have whilst in our Launchpad gallery.

Here’s a selection of animal-based inventions drawn up by some of our imaginative visitors. Click on any image to see bigger pictures.

Explainer Fact: The Museum has a large anatomical horse in the Veterinary section on the 5th floor