Category Archives: Inventions

Google Doodle celebrates pioneering chemist Dorothy Hodgkin’s 104th birthday

By Roger Highfield, Director of External Affairs

Google today celebrates the life of the Nobel-prize-winning chemist Dorothy Crowfoot Hodgkin (1910-1994) with a Doodle on its homepage.

Here you can see the inspiration for the Doodle on what would have been her 104th birthday, her historic image of the three dimensional atomic structure of penicillin, which she deduced with a method called X ray crystallography.

Because it was not possible to focus X rays scattered by the penicillin, Hodgkin used large punch-card operated tabulators, predecessor to the computer, to help analyse the way the molecule diffracted X-rays. You can see the original in the Hidden Structures display case in the Science Museum.

Molecular model of penicillin by Dorothy M Crowfoot Hodgkin, England, 1945. Image credits: Science Museum

Molecular model of penicillin by Dorothy M Crowfoot Hodgkin, England, 1945. Image credits: Science Museum

Hodgkin, who at Oxford University taught the future prime Minister Margaret Thatcher (then Margaret Roberts) in the 1940s, won the Nobel Prize for Chemistry in 1964 “for her determinations by X-ray techniques of the structures of important biochemical substances”.

Another notable molecular structure Hodgkin tackled was that of vitamin B12, which she cracked with the help of Alan Turing’s Pilot Ace computer, which can also be seen in the Museum.

Pilot ACE (Automatic Computing Engine), 1950. Image credits: Science Museum

Pilot ACE (Automatic Computing Engine), 1950. Image credits: Science Museum

She was one of the first people in April 1953 to travel from Oxford to Cambridge to see the model of the double helix structure of DNA, constructed by Briton Francis Crick and American James Watson, based on data acquired by Rosalind Franklin, which can also be seen in the Museum’s Making the Modern World gallery.

Crick and Watson’s DNA molecular model, 1953. Image credits: Science Museum

Crick and Watson’s DNA molecular model, 1953. Image credits: Science Museum

The pioneering protein crystallographer, the third woman to win the Nobel Prize in Chemistry, was awarded the Order of Merit, only the second woman to do so, after Florence Nightingale, and was the first to be awarded the Royal Society’s Copley medal, its oldest and most prestigious award.

She died in July 1994, aged 84. In her honour, the Royal Society has established the prestigious Dorothy Hodgkin fellowship for early career stage researchers.

The origins of the technique she used date back to when X-rays, one of the most remarkable discoveries of the late 19th century, had been shown to react strangely when exposed to crystals, producing patterns of spots on a photographic plate.

In 1912 physicists William Bragg (1862-1942) and his son Lawrence Bragg (1890-1971) worked out a formula that linked the X-ray diffraction pattern with a crystal’s atomic structure, paving the way for X-ray crystallography as a technique to determine the structure of materials at the atomic level. For this, Bragg and his son won the Nobel Prize in Physics in 1915.

 

In search of perfect sound – introducing Britain’s largest horn loudspeaker

Aleks Kolkowski, former sound artist-in-residence, remembers his first encounter with the Museum’s exponential horn.

 A long black metal tube, slightly tapered and almost 9-foot-long lay on a row of filing cabinets at Blythe House, the Science Museum’s storage facility. The object was pointed out by John Liffen, the Museum’s Curator of Communications, who guided me during a research visit of the collections in 2008. It was all that remained of a mighty horn loudspeaker that was demonstrated in the Museum during the 1930s, John explained. A demolition accident had almost totally destroyed it in 1949.

John Liffen holding the only surviving section of the Science Museum’s exponential horn. Credit: Science Museum

John Liffen holding the only surviving section of the Science Museum’s exponential horn. Credit: Science Museum

Now the tube assumed a more fascinating form, like a fossil or a dinosaur bone as we delved into audio archeology. The story of the horn, researched in great detail by John, sparked an interest in me. Four years later in 2012, on being appointed as the Museum’s first-ever sound artist-in residence, I was given a wonderful opportunity to initiate its reconstruction.

The exponential horn loudspeaker was designed in 1929 by the Museum’s curator of  ‘Electrical Communication’ R. P. G. Denman who also personally built a radio receiver to run in tandem with it. The purpose of this new sound system was to provide the public with demonstrations of the highest quality broadcast sound that was obtainable at the time. Denman saw it as setting a benchmark for audio quality, his aim was, in his words “to provide a standard by which commercial apparatus could be judged”.

The horn measured 27 feet (8.23m) in length with a cross section that curved exponentially from 1 1/16 inches (27mm) to a massive 7-foot-1-inch square (2.16m sq.) at the horn mouth. The science and theory of how horns propagate sound had only begun to emerge in the mid-1920s. It was found that a horn with an exponential shape was the most effective means of converting the sound energy from high pressure, low velocity vibrations produced at the narrow end of the horn, into low pressure, high velocity vibrations at its mouth, then radiated into the outside air. However, in order to reproduce the lowest sounding frequencies, this type of horn has to be very long with a correspondingly large opening.

An early photograph of the horn prior to its installation at the Science Museum. Published in Amateur Wireless, October 19, 1929. Credit: British Library

An early photograph of the horn prior to its installation at the Science Museum. Published in Amateur Wireless, October 19, 1929. Credit: British Library

Denman, an expert on loudspeakers, specially designed the horn in order to reproduce frequencies as low as 32Hz and up to 6kHz. This was achieved by loading it to one of the latest moving-coil driver units from the Western Electric Company (U.S.A.) namely the WE 555W, widely used in cinema sound systems of the time and now considered to be one of the greatest loudspeaker drivers ever made.

The Museum’s Western Electric 555W Compression Driver used with the Exponential Horn Loudspeaker from 1929 – 1939. Credit: Science Museum

The Museum’s Western Electric 555W Compression Driver used with the Exponential Horn Loudspeaker from 1929 – 1939. Credit: Science Museum

From 1930 until the outbreak of WWII in 1939, the apparatus was demonstrated daily in the Museum’s Radio Communication gallery. The giant horn mouth appeared through the wall above the entrance while the rest of it hung conspicuously in the adjacent Agricultural Implements gallery. It was built into the Museum’s infrastructure and may be described as being its very first sound installation.

Concerts broadcast on the BBC’s London Regional programmes provided the content for the demonstrations. Critical reactions were positive and for audiences at the time, accustomed to limited bandwidth, interference and distortion, the sound must have truly been a revelation. The Museum’s Radio gallery became a popular lunchtime destination, where sandwiches were cheerfully munched while listening to the classics or Wurlitzer cinema organ music, the audio reproduced in glorious full-range. It left an indelible impression on those who heard it, including John Liffen’s own uncle. Writing in the Audio Engineering Society Journal of April 1975, the audio experts Percy and Geoffrey L. Wilson opined that “no superior loudspeaker has to date been demonstrated in Britain”.

The horn’s mouth over the entrance to the Radio Communication gallery is shown by a museum attendant standing on a showcase! From Popular Wireless, October, 1930. Credit: British Library

The horn’s mouth over the entrance to the Radio Communication gallery is shown by a museum attendant standing on a showcase! From Popular Wireless, October, 1930. Credit: British Library

Fast-forward to 2014 and we have an opportunity to hear the horn again.

This is thanks in no small part to the magnificent efforts of the Museum’s Workshops who undertook the reconstruction project with gusto. The missing 18-feet of the horn was rebuilt over an intense 8-month period following Denman’s original specification, although fibre-glass was used in place of the original lead and tin alloy. Led by the Workshops manager Steve Long, the team has succeeded in recreating the single largest loudspeaker in Britain.

The newly reconstructed horn being tested by the author at Blythe House in August 2013. Credit: Science Museum

The newly reconstructed horn being tested by the author at Blythe House in August 2013. Credit: Science Museum

The programme for the upcoming installation is a mixture of past and present, allowing us to listen to the horn in old and new ways. Archive material from the BBC will be heard alongside recent recordings made within the Science Museum. Resonance 104.4FM will be resident in the space, broadcasting live from the Museum, while lunchtime concerts via BBC Radio 3 will mirror the original demonstrations of the 1930s. A series of events, including live music, poetry and performance will also showcase new works for the horn created by a variety of artists, writers and radio programme-makers.

The title, “In Search of Perfect Sound”, refers to Roderick Denman’s quest for audio nirvana. Our modern ears may have become accustomed to high fidelity audio and surround sound, but the exponential horn, with its extraordinary sound presence and a distinct three-dimensional effect, still holds an immersive power of its own.

I’m very proud to have played a part in giving the Denman horn a new lease of life and to have witnessed its exponential metamorphosis, from that modest-looking metal tube, cocooned above all those filing cabinets.

The Exponential Horn: In Search of Perfect Sound opens at the Media Space Studio on 20th May. An afternoon of talks and presentations about the horn and the history of radio in Britain will be held on 12th July. Speakers include John Liffen, Aleks Kolkowski, Dan Wilson and Seán Street.

Aleks Kolkowski is a sound artist, violinist and composer with a special interest in early sound recording and reproduction technology.

Wonderful Things: VCS3 Synthesiser

Stella Williams from our Learning Support Team writes about one of her favourite Science Museum objects

The VCS3 was more or less the first portable commercially available synthesizer, unlike previous machines which were housed in large cabinets and were known to take up entire rooms. It was created in 1969 by EMS (Electronic Music Studios), a company founded by Peter Zinovieff. The team at EMS used a combination of computer programming knowledge, advanced engineering and musical ambition to create a brand new instrument for all to use. The electronics were largely designed by David Cockrell and the machine’s distinctive visual appearance was the work of electronic composer Tristram Cary.

VCS3 synthesiser by EMS

VCS3 synthesiser by EMS
Credit: Science Museum/SSPL

The VCS3 was notoriously difficult to program but, a year before the appearance of the Minimoog and ARP2600, it brought synthesis within the reach of the public. It sold for £330 and became very popular in a short space of time. By the mid ’70s, the VCS3 (and its little brother, the suitcase-bound model AKS) had become something of a classic and was used by many famous bands like Pink Floyd, Yes, The Who and Roxy Music.

This unique instrument allowed musicians to experiment with a range of new sounds never before available to them. Along with other early synthesisers it came to shape ‘the sound of the future’ in the ‘60s and ‘70s, and with further developments came the drum machines of the ‘80s setting the foundation for electronic dance music. Much of the music we take for granted today would not be possible without the pioneering work of groups like EMS and as long as there are developments in technology, there will always be people applying these innovations to music. Inventor Steve Mann has developed many interesting instruments such as the hydraulophone which uses pressurised water to make sounds, while artist and scientist Ariel Garten uses an electroencephalophone to turn brainwaves into music.

What sort of instrument do you think will make the sound of our future?

The VCS3 Synthesiser can be found in the Oramics to Electronica exhibition, on the second floor of the Science Museum.

Waiting for the end of the world with my father, James Lovelock

As a new exhibition on James Lovelock opens, his daughter Christine recalls her science-filled childhood and the night they sat up waiting for a comet to destroy the Earth.

Photo of James Lovelock in his laboratory at Coombe Mill. Image credit: Science Museum

Photo of James Lovelock in his laboratory at Coombe Mill. Image credit: Science Museum

When I was a child my father took us to the Science Museum in London. His favourite exhibit was the Newcomen steam engine, built in the early 18th century to pump water from mines. He told us how much the museum had inspired him when he was a child. Science had become the abiding passion of his life, and as we grew up it was the background to ours as well.

We lived for a while at the Common Cold Research Unit, where my father worked, at Harvard Hospital near Salisbury in Wiltshire, and even became part of the research. Whenever we caught a cold the scientists put on parties for us where we would pass on our germs, as well as parcels, to the volunteers who lived in the isolation huts.

My strongest memories of my father during this period are the conversations we had about scientific ideas, whether on country walks or at the dining table. We often had fun working out plots for stories, including one he helped me to write about some fossil hunters on a Dorset beach who stumbled on a fossilised radio set – with shocking implications for the established science of geology.

When we moved back to Wiltshire, he turned Clovers Cottage into the world’s only thatched space laboratory. It was full of interesting equipment, much of it home-made, including an electric Bunsen burner. The cottage used to have a skull and crossbones in the window, with the warning “Danger Radioactivity!” My father always said this was a good way to deter burglars.

Clovers Cottage in Wiltshire, 'the world's only thatched space laboratory', where Lovelock worked for Nasa in the 1960s investigating the possibility of life on Mars. Image credits: Christine Lovelock

Clovers Cottage in Wiltshire, ‘the world’s only thatched space laboratory’, where Lovelock worked for Nasa in the 1960s investigating the possibility of life on Mars. Image credits: Christine Lovelock

One evening in the 1960s, my father arrived home from a trip to Nasa’s Jet Propulsion Laboratory in California with some frightening news. A comet had been spotted that was expected to hit Earth that night. The Nasa astronomers back then didn’t have today’s computer technology and said there had been no time to go public with the news.

My father wasn’t worried about the potential disaster. His reaction was a mixture of apprehension, curiosity and excitement. As he said, “If it hits us and it’s the end of the world, we won’t know anything about it, but if there is a near miss, then we might see some amazing fireworks.” While the rest of Britain slept a peaceful sleep, we packed up the car and drove to the highest hill nearby.

I’ll always remember that night, when we snuggled under blankets in the darkness, waiting and watching for what might have been the end of the world. It didn’t happen, of course. The astronomers got it wrong, as my father expected they would, but in an odd – and unscientific – way we felt we had done our bit to keep the Earth safe.

James Lovelock and his daughter Christine collecting air samples in Adrigole, South-West Ireland, 1970. Image credits: Irish Examiner

James Lovelock and his daughter Christine collecting air samples in Adrigole, South-West Ireland, 1970. Image credits: Irish Examiner

As I grew older I began to help my father more with his work. One day I will never forget is when we went up Hungry Hill on the Beara Peninsula in Ireland in 1969. Our mission was to collect samples of the cleanest air in Europe, blowing straight off the Atlantic. My father then drove straight on to Shannon Airport, and flew with the samples to the United States.

On arrival, a customs officer thought my father was being facetious when he said the flasks contained “fresh Irish air”. An argument ensued in which the official demanded that the flasks be opened, which would have made the whole journey pointless. Fortunately, sense prevailed and the samples reached their destination safely.

Christine Lovelock is an artist who campaigns to preserve the countryside.

You can watch our Youtube video of James Lovelock talking about the inspiration behind his inventions and what the Science Museum means to him.

Wonderful Things: Peruvian Rubber Ball

Shaun Aitcheson from our Learning Support Team writes about one of his favourite Science Museum objects.

What do you think this is?

What is this?

Credit: Science Museum/SSPL

Whilst this may look like a rock or a big ball of old chewing gum, it’s actually a rubber ball. It was found in the grave of a Peruvian child, and is thought to date from 1590-1610. Rubber balls were invented by the Ancient Mesoamericans who used them in what was probably the first ever ball sport, a game similar to racquetball called the Mesoamerican Ballgame. This game was invented around 1600 BC, but could be even older. In some places, instead of a rubber ball, they would use a human head!

Image Credit: Marjorie Barrick Museum http://barrickmuseum.unlv.edu/families/img/Maya14-small.jpg

Today we think of rubber balls as toys, but this one was most likely used as a funeral offering as a symbolic gesture towards the afterlife or perhaps even evidence of a human sacrifice to the gods.

Although this ball is only around 400 years old, it highlights just how long rubber has been used by humans. Incredibly, humans have been creating rubber for over 3500 years.

The first use of rubber was by the Olmec people (Rubber People) of South America. They would boil natural latex, a milky sap-like substance, which they ‘tapped’ from the rubber tree Hevea Brasiliensis, and mixed with the juice of a ‘morning glory’ vine. This created a very stretchy and extremely waterproof material. The Olmec’s used it to create items such as rubber balls, galoshes and waterproof cloaks.

Rubber wasn’t used greatly in the West until 1770 when an Englishman called Joseph Priestly, noticed that the material was very good at rubbing away pencil marks, hence the name ‘rubber’. Charles Mackintosh began using rubber to create his famous waterproof jackets in 1824. However, they were far from perfect as they melted in hot weather and smelled very bad!

Charles Goodyear and Thomas Hancock are responsible for producing the rubber we know today. In the 1840s they heated it in combination with sulphur to produce vulcanised rubber, strengthening it greatly. Thanks to the invention of the bicycle and motor car, rubber consumption soared as it was the perfect material for tyres, with its very durable and shock absorbent qualities.

The rubber ball can be found in Challenge of Materials, on the first floor of the Science Museum.

3D printing gadgets on wheels

Martyn Harris, cyclist and entrepreneur, looks at how 3D printing inspired him to launch a new business. See more examples of 3D Printing in our 3D: Printing the future exhibition.

My two lifelong passions are cycling and engineering. As a child I could regularly be found either riding my bike or constructing some new contraption out of lego. I started racing mountain bikes at the age of 13 and after leaving school, embarked on a four year apprenticeship to become a precision machinist.

In 2000 I joined 3TRPD, a newly formed company specializing in 3D printing. I was instantly hooked by this state-of-the-art process and have been seeking ways to introduce the technology into the bike industry ever since.

3 colour Garmin cycle mounts produced by RaceWare Direct. Image credit: RaceWare Direct

3 colour Garmin cycle mounts produced by RaceWare Direct. Image credit: RaceWare Direct

When I found myself struggling to find a sleek way of mounting my power meter to my Time Trial bike, it was the catalyst that I needed to start designing my own components using 3D printing. I opened my own company, RaceWare Direct at the beginning of 2012.

Neon Garmin mount by RaceWare Direct. Image credit: RaceWare Direct

Neon Garmin mount by RaceWare Direct. Image credit: RaceWare Direct

Having posted on cycle forums that I was making 3D printed computer mounts, the level of enthusiasm was overwhelming. Within a matter of weeks, I had dozens of potential orders and several designers who wanted to help me with new products. By the end of the year, we had a full range of products and had secured UK distribution with Saddleback, a well respected distributor of high end cycle products.

My future vision for RaceWare is for it to grow into the world leader in 3D printed cycle components.

You can see a selection of gadgets produced by RaceWare on display in the Science Museum’s 3D printing exhibition.

‘Tis the season to 3D print your Christmas

Press Officer Laura Singleton explores some festive 3D printing.

Christmas can be one of the most stressful times of the year – with presents to wrap, trees to be put up and cards to be written. Finding the perfect gift or decoration can be expensive, time-consuming and exhausting. Could the rise of 3D printing provide the answer to our seasonal woes and even tap into our hidden creativity?

Earlier this month we were pleased to unveil a dramatic 3D printed titanium star, which sits on top of the Director’s Christmas tree. The star, which measures 44cm wide, is an awe-inspiring example of what can be achieved on a 3D printer. The star’s design is based on fractals, the self-repeating patterns found within a Mandelbrot set.

Close up of Jessica Noble's 3D printed titanium star. Image credits: Science Museum

Close up of Jessica Noble’s 3D printed titanium star. Image credits: Science Museum

The star was the result of a challenge set by the Science Museum’s Director Ian Blatchford at last year’s Christmas party. Attendees to the event were challenged to come up with an innovative design for a star – to be created and displayed on our Christmas tree.

Jessica Noble's 3D printed titanium star. Image credits: Science Museum

Jessica Noble’s 3D printed titanium star. Image credits: Science Museum

Conceived and designed by London based designer Jessica Noble, with help from Nottingham University, the star features a central nylon core and 97 3D printed individual titanium stars printed by Renishaw that were then connected to the core using carbon fibre rods. The individual parts make the star easy to assemble, dissemble and rearrange – a clear advantage over other types of decoration. The Mandelbrot reference gives a nod to the Science Museum’s mathematical collections.

Designer Jessica Noble with her 3D printed star on top of the Director's Christmas tree. Image credits: Science Museum

Designer Jessica Noble with her 3D printed star on top of the Director’s Christmas tree. Image credits: Science Museum

However, you don’t need to be an artist or designer to take advantage of the benefits of 3D printing. Many printers are now available on the high street and can produce smaller scale designs of your choice. Our Inventor in Residence, Mark Champkins, has taken advantage of the technology by creating a range of decorations and gift tags for the Science Museum’s shop that can be 3D printed in under 15 minutes.

A selection of 3D printed snowflakes created in the Science Museum's store. Image credits: Science Museum

A selection of 3D printed snowflakes created in the Science Museum’s store. Image credits: Science Museum

As the museum’s store now sells 3D printers, we’ve set one up to demonstrate how the technology works. Should you wish to buy a decoration such as a snowflake or star, you can choose a design and watch it being printed – ready for you to take home. Why not pay a visit to the museum and try it out?

A 3D printed snowflake designed by Inventor in Residence, Mark Champkins. Image credits: Science Museum

A 3D printed snowflake designed by Inventor in Residence, Mark Champkins. Image credits: Science Museum

The link between science and design was the topic of a recent debate held jointly at the Science Museum and Design Museum and attended by Universities and Science Minister, David Willets MP. Organised with the Technology Strategy Board (TSB) and the Engineering and Physical Sciences Research Council, the debate focused on breaking down language barriers and encouraging interaction between scientists, engineers and designers explained David Bott, Director of Innovation Programmes at the TSB.

3D printing is rapidly changing society – whether at home, work or our leisure activities. You can find more examples of how the technology is growing in our free exhibition, 3D: Printing The Future, which showcases over 600 3D printed objects including prototypes for replacement body organs, bike gadgets and aeroplane parts.

JJ Thomson’s Cathode-ray tube

Rupert Cole celebrates JJ Thomson’s birthday with a look at one of the star objects in our Collider exhibition.

Holding the delicate glass cathode-ray tube in my hands, once used by the great physicist JJ Thomson, was an incredible treat, and an experience I will never forget.

I had read lots about Thomson’s famous experiments on the electron – the first subatomic particle to be discovered – but to actually see and touch his apparatus myself, to notice the blackened glass and the tube’s minute features that are omitted in books, brought the object to life. History suddenly seemed tangible.

Using more than one cathode-ray tube in 1897 for his experiments, Thomson managed to identify a particle 1,000 times smaller than the then known smallest piece of matter: a hydrogen atom. Cambridge’s Cavendish Laboratory, where Thomson spent his scientific career, also has an original tube in its collection.

Each tube was custom-made by Thomson’s talented assistant, Ebenezer Everett, a self-taught glassblower. Everett made all of Thomson’s apparatus, and was responsible for operating it – in fact, he generally forbade Thomson from touching anything delicate on the grounds that he was “exceptionally helpless with his hands”.

The quality of Everett’s glassblowing was absolutely crucial for the experiments to work.

Cathode-rays are produced when an electric current is passed through a vacuum tube. Only when almost all the air has been removed to create a high vacuum – a state that would shatter ordinary glass vessels – can the rays travel the full length of the tube without bumping into air molecules.

Thomson was able to apply electric and magnetic fields to manipulate the rays, which eventually convinced the physics world that they were composed of tiny particles, electrons, opposed to waves in the now-rejected ether.

Find out more about Thomson and the story of the first subatomic particle here, or visit the Museum to see Thomson’s cathode-ray tube in the Collider exhibition. If you’re interested in the details of how Thomson and Everett conducted their experiments visit the Cavendish Lab’s outreach page here.

3D printing – an explosion of creativity!

Suzy Antoniw, Content Developer in the Contemporary Science Team, looks at the creation of a new exhibition on 3D printing.

What can make impossible shapes solidly real and create unique, one-off medical treatments that could change your life? A 3D printer of course!

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

Around nine months ago we were given the exciting challenge of creating 3D: Printing the Future, a new Contemporary Science exhibition to show off the real-life capabilities of these hugely hyped machines and highlight the latest 3D printing research.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer. Image credit: Science Museum

But hang on, what exactly is a 3D printer? Even if you’ve read stories about them in the news you probably don’t have one sitting on your desk just yet. So here’s our definition: A 3D printer is a manufacturing machine that turns 3D computer data into a physical object, usually by building it in layers. They come in a variety of types that range from simple consumer models to sophisticated industrial printers.

A prosthetic arm concept  made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

A prosthetic arm concept made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

As well as covering the basics, we decided that our exhibition should focus on the incredible things that 3D printers can create – such as replacement body organs and teeth, that could make a difference to the lives of our visitors.

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printers have been around for decades, so what’s changed? In recent years the patents on simple 3D printing technologies have run out. 3D printers have become available to more people in the form of affordable consumer models, or even as open source plans freely available on the internet.

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

This new freedom to invent has generated an explosion of creativity. And it’s not just hackers, tinkerers and makers who’ve felt the benefits of this new breath of life for engineering and design, but established industry and academia too. So how do you represent a diverse and dynamic explosion of creativity?

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

In July we began collecting 3D printed stuff for what has been known as ‘an explosion’, our ‘mass display’, ‘the wave’, ‘the wall’ and (my favourite) a ‘tsunami of objects’. The display contains over 663 objects – the largest number we’ve ever acquired for a Contemporary Science exhibition, thanks to generous loans, donations and the enthusiasm of the maker community.

Among the amazing ‘wave’ of objects you can see a display of 150 miniature 3D printed people – visitors who volunteered to have themselves scanned in 3D at the Museum over the summer holidays. Look closely at the wall and you may spot actress Jenny Agutter reading her script, model Lily Cole and BBC Radio 4 presenter Evan Davis - with his arm in a sling!

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

The free exhibition is open to the public from 9 October and will run for nine months.

Summer Invention Challenge

By Mark Champkins, Science Museum Inventor in Residence is challenging young visitors to design an invention to help solve a common summer problem. The winner will receive a Makerbot 3D printer worth over £2,000 and get their idea 3D printed and displayed in a new exhibition

When we’re basking in a heat wave, spending a summer holiday in Britain can be the perfect way to unwind. But as we all know, a British summer can present it’s own problems – from annoying wasps, to superheated car journeys, and from rain-soaked barbecues to sand in your sandwiches.

Picture credit: iStock / Science Museum

Picture credit: iStock / Science Museum

This summer we are challenging young visitors to get their thinking caps on and come up with an invention to help solve a common problem that most of us experience at this time of year. The winner will receive a prize of a Makerbot 3D printer worth over £2,000 and get their idea 3D printed and displayed in a new exhibition opening this Autumn.

MakerBot Replicator 2 Desktop 3D Printer

MakerBot Replicator 2 Desktop 3D Printer

Could it be an anti-wasp drink shield, or a sunshade for your ice-cream? Or perhaps a fan that can be clipped to your sunglasses, or a sunhat with a deployable umbrella?

Picture credit: iStock / Science Museum

Picture credit: iStock / Science Museum

To get everyone started we are asking people to think of the places they normally visit when they’re holidaying in Britain and the problems people might face in situations such as the seaside, in the countryside, on a long car journey or at home in the garden. Then think about the pet hates that you normally experience and devise a clever (or funny) solution that could help overcome the problem.

To join the summer invention challenge click here.