Category Archives: Science Museum

Information Age: evolution or revolution?

On Friday 24 October 2014, the Science Museum celebrated the launch of a new permanent gallery; Information Age. The gallery explores over 200 years of information and communication technologies and was officially opened by Her Majesty The Queen who marked the occasion by sending the first tweet by a reigning monarch. In the afternoon, the Museum’s IMAX auditorium continued the celebrations, bringing together a panel of some of the world’s leading thinkers and entrepreneurs to share their insights and predictions about the big events that have shaped the communication technology we are familiar with today, and look ahead to what the future may hold.

Director of External Affairs Roger Highfield introduces the panel at Information Age: evolution or revolution?

We’re repeatedly told that we are experiencing more rapid technological advances than ever before. But over the past two centuries, our predecessors witnessed transformational developments in communication technology that were arguably far more revolutionary, from the laying of the first telegraph cable that connected the UK and USA to the birth of radio and TV broadcasting.

What can we learn from their experiences? Is what we are going through truly an unparalleled revolution, or does our focus on the now distort our perspective on an ongoing evolution in our relationship to information?

Click here to listen to the whole discussion and decide for yourself…

Chaired by Tom Standage, Digital Editor of The Economist and author of The Victorian Internet and Writing on the Wall, the expert panel brought together to discuss this question featured:

  • Hermann Hauser, computing engineer and co-founder of venture capital firm Amadeus Capital Partners
  • Baroness Martha Lane Fox, co-founder of lastminute.com, Chancellor of the Open University, chair of Go ON and board member of Marks and Spencer
  • Mo Ibrahim, mobile communications entrepreneur and founder of Celtel, one of Africa’s leading telecommunications operators, and
  • Jim Gleick, best-selling author of Chaos and The Information

The opening of Information Age marks the start of the biggest period of development of the Museum since it was opened over a century ago. Over the next five years, about a third of the Museum will be transformed by exciting new galleries, including a brand new mathematics gallery designed by Stirling Prize-winning architect Zaha Hadid.

Information Age is now open, located on floor 2 of the Museum. A new book entitled Information Age, to which the event’s panel have all contributed, is also now on sale in the Museum shop and online.

Her Majesty The Queen sends her first tweet to unveil the Information Age

By Roger Highfield, Director of External Affairs

Her Majesty The Queen this morning opened the pioneering Information Age gallery at the Science Museum by sending her first tweet to the world, 76 years after The Queen’s first visit to the museum.

HM The Queen opens the Science Museum's Information Age gallery by sending her first tweet

HM The Queen opens the Science Museum’s Information Age gallery by sending her first tweet. Credit: Science Museum

The Queen and His Royal Highness The Duke of Edinburgh had earlier toured the landmark gallery, which explores the six networks that have transformed global communications, listening to personal recollections of people whose first experience of television was watching her Coronation in 1953.

Inviting Her Majesty to open the gallery, Science Museum Director Ian Blatchford remarked on how royalty had embraced communications technology from the day Queen Victoria took an interest in the invention of the telephone, which was demonstrated to her in January 1878 by Alexander Graham Bell at Osborne House, Isle of Wight.

“Your Majesty has followed in this tradition,” said Mr Blatchford while addressing around 600 guests including communications entrepreneurs, authors and experts, from Baroness Lane Fox, Hermann Hauser and Mo Ibrahim to Prof Steve Furber, James Gleick, Tom Standage and Sir Nigel Shadbolt.

“You made the first live Christmas broadcast in 1957,” he added, “and an event relished by historians took place on 26 March 1976, when you became the first monarch to send an email, during a visit to the Royal Signals and Radar Establishment. “

Then Mr Blatchford invited Her Majesty to join him to “send your first Tweet”.

The Queen removed a glove to send her pioneering tweet from the @BritishMonarchy Twitter account.

 

The Queen's first Tweet

The Queen’s first Tweet

This marked the first time that a reigning British monarch contributed one of the half billion or so tweets that are sent every day.

The Queen has a long relationship with the Science Museum and first visited in March 1938, as a princess, a few years after it launched a pioneering Children’s Gallery.

Today she explored Information Age: Six Networks That Changed Our World, the first museum gallery dedicated to the history of information technologies, containing more than 800 iconic objects and six state-of-the art interactive displays in story boxes connected by an elevated walkway.

The £16 million project saw collaborations with leading artists and thinkers, including Olivier award-winning video and projection designer Finn Ross, artists Matthew Robins and Rafael Lozano-Hemmer, broadcaster Bonnie Greer and developer of the world wide web, Sir Tim Berners-Lee.

From the dramatic story of the laying of the first transatlantic telegraph cable that connected Europe and North America  to the birth of the modern smartphone, it looks at how today’s  world was forged with six communication networks: the telegraph; the telephone, radio and television broadcasting; satellite communications; computer networks; and mobile communications.

Lead curator Dr Tilly Blyth showed The Queen and The Duke of Edinburgh around the exhibition, from the bright yellow call box from Cameroon to the BBC’s first radio transmitter from 1922 to the monumental 6-metre high aerial tuning inductor from Rugby Radio Station that lies at the heart of the gallery.

This strangely beautiful web of copper and wood was once part of the most powerful radio transmitter in the world and was donated to the Science Museum by BT.

Over 410,000 people follow the Science Museum on Twitter via @sciencemuseum.

We use twitter to share as many fascinating objects (some weird, others wonderful) and stories from our exhibitions and collections as possible.  In the past we have shared science jokes and organised a Q&A with an astronaut.

We’ve even taken our followers inside Charlie Brown, the Apollo 10 Command Module.

Our curators regularly take over the @sciencemuseum account, taking hundreds of thousands of followers on Twitter tours of their favourite objects. In the past, @rooneyvision has shared his story of how we made the modern world, with @ali_boyle selecting her favourite objects from our astronomy collection (you can read the #CosmosTour here).

The @ScienceMuseum account was also at the heart of the Great British Innovation vote which attracted more than 50,000 votes from the public for their favourite innovation.

We love reading tweets from the millions of you who visit each year, sharing stories of visits, getting engaged and even dancing under our rockets.

From astronauts to pop stars, we have had the pleasure of meeting and tweeting many famous faces. Astronaut Gene Cernan, the last man on the moon, joked with us about driving a NASA moon buggy, with Chris Hadfield sharing stories of life on board the International Space Station, and will.i.am joining us for a tour of the museum.

And it was a remarkable day when both Prof Stephen Hawking and Nobel prize-winner Prof Peter Higgs met in the Science Museum for our Collider exhibition opening.

This year a record breaking 450,000 young people visited the Science Museum on educational trips, or benefitted from its outreach programme, more than any other UK museum. Our Learning team (@SM_Learn) helps schools to plan their visits as well as sharing science demos and experiments that wow visitors every day.

Information Age has been made possible through the generous support of the Heritage Lottery Fund, BT (Lead Principal Sponsor), ARM (Principal Sponsor), Bloomberg Philanthropies and Google (Principal Funders).  Major Funders include the Garfield Weston Foundation, the Wolfson Foundation, the Bonita Trust and the Motorola Solutions Foundation. 

Additional support has been provided by Accenture (Connect Circle Sponsor) as well as the Institution of Engineering and Technology (IET), Cambridge Wireless (CW), the David and Claudia Harding Foundation and other individual donors.  The Science Museum would also like to thank the BBC for their assistance.

Zaha Hadid on Maths, Architecture and Women in Science

By Roger Highfield, Director of External Affairs.

When Zaha Hadid won the commission to design a new Mathematics gallery at the Science Museum, there was one question that I simply had to ask her: given she studied mathematics at university and the pervasive evidence that science is institutionally sexist, how much of a hurdle faces women today and how much of an inspiration would her appointment prove to be?


Her acknowledgement that, even for her, the gender gap remains an issue, and particularly in Britain, surprised me: “I’ve come across it a lot in my career here and I never felt it anywhere else to be honest,” she remarks. Her comments, made during a recent visit to the Science Museum, are particularly salient on Ada Lovelace Day (14 Oct), an international celebration of the achievements of women in science, technology, engineering and maths.

The Iraqi-British architect was born in 1950 and raised in one of Baghdad’s first Bauhaus-inspired houses. “In Iraq, maths was taught as a way of life,” she recalls. “We used to just do maths to resolve problems continuously, as if we were sketching.”

But when she came to boarding school in Britain in the early 1960s she found that she “was much more advanced in the sciences than many of the kids at the time, not because they were not smart. I think it was badly taught and it’s very important to teach sciences and maths in a way that makes it appealing.”

Before she went to boarding school, aged around 10, Dame Zaha vividly remembers a trip with her parents to the Science Museum. “It was for me at the time extremely fascinating to see instruments and understand about science. And, around the same time, I also went to art museums. I used to come every summer to London when I was in my teens.”

She went on to study mathematics at the American University of Beirut. The explosion of interest in construction and modernity of the 1960s encouraged her to study at the Architectural Association School of Architecture in London. Today, she is one of the most sought-after architects on the planet, the only female recipient of the prestigious Pritzker Architecture Prize, considered the Nobel Prize of the field.

From the Aquatics Centre she designed for the London Olympics to Rome’s curvilinear National Museum of the XXI Century Arts and China’s Guangzhou opera house, her concepts are futuristic and often voluptuous, with powerful, curving forms. Her work, she explains, has its roots in movement that is a century old, citing the work of Russian abstract artist Kazimir Malevich. The dire economic situation in the West in the seventies “fostered in us similar ambitions: we thought to apply radical new ideas to regenerate society.”

One would have thought that her global success as a ‘starchitect’ is a testament to how the gender gap is no longer a hurdle in Britain. However, like her late British-educated father, an economist and industrialist who helped to found the Iraqi National Democratic party, she found that she had to be dogged to succeed in her career. “I took a risk. “People were thinking I was crazy to do what I did even 30 years ago because it was very risky and that no-one’s going to give me a job. They were right.”

In the 1970s Dame Zaha met Peter Rice, an engineer, who encouraged her and she established her own London-based practice. However, she still struggled for recognition. Twenty years ago, the Millennium Commission refused to fund her winning “crystal necklace” design for the Cardiff Bay Opera House. Dame Zaha said at the time that she had been stigmatised on grounds of gender and race.

There is plenty of evidence that it remains a battle for women to pursue science and mathematics with the same ease enjoyed by men. According to the US National Science Foundation, women comprise only 21% of full science professors (just 5% of full engineering professors) even though they earn about half the doctorates in science and engineering in the US. They have to work harder to make the same impact.

One study, published last December by Cassidy Sugimoto of Indiana University Bloomington, and colleagues, evaluated 5,483,841 papers published between 2008–2012 and concluded that “in the most productive countries, all articles with women in dominant author positions receive fewer citations than those with men in the same positions”.

It is a similar picture for the UK and for architecture too. Last year Dame Zaha criticised the “misogyny” among UK architects, arguing that society is not equipped to help women back to work after childbirth. “You know we still suffer,” Dame Zaha tells me. “ it’s not very smooth. There’s been a problem always – the stereotype is that girls can’t do sciences.”

But, of course, they can. Over the years she has taught at many prestigious institutions, from the Harvard Graduate School of Design to the Hochschule für bildende Künste Hamburg and The University of Applied Arts, Vienna. “Some of my best students are women,” she remarks. “I think it’s very important to encourage them.”

She acknowledges that her struggle and resulting success plays an inspirational role. “I do notice now when I go out to give a talk somewhere there are many girls who come to me. They want to be reassured that they actually can break that barrier and also do it with confidence. That’s why education is very important as it gives you confidence to conquer the next step. That confidence allows you to take risks.”

At the launch of the museum’s new Mathematics gallery in September, Dame Zaha was accompanied by museum Director Ian Blatchford, David and Claudia Harding – who made an unprecedented £5 million donation to build the gallery through their foundation – Culture Secretary Sajid Javid and her business partner, architect Patrik Schumacher, who helps Dame Zaha lead her team of 300 people.

Science Museum Curator David Rooney explained how the centrepiece of the forthcoming gallery will be the Handley Page ‘Gugnunc’, a 1929 British experimental aircraft with a 12-metre wingspan that was designed to fly safely at slow speeds from short take-offs.

The aircraft’s aerodynamics proved influential at the very beginnings of civilian air travel. In the same way, the swirling flows of air around the aircraft in flight inspired Dame Zaha’s design and will allow mathematics to take flight in the museum.


Behind the Handley Page in her design lie three minimal surfaces (they enclose the smallest possible area that satisfy some constraints) that are based on the shapes of the vortices in the turbulence created behind the plane in flight. The equation defining these surfaces is governed by six different parameters and, by tweaking them, a menagerie of sensuous shapes emerges on screen in the offices of Zaha Hadid Architects. “Mathematics and geometry has an amazing influence particularly on our work,” she says. “It’s very exciting.”

Some of these surfaces will provide the backdrops to support display cases used throughout the galleries to provide an appropriate setting for a dazzling range of objects that will span 400 years of science and mathematics. It seems only appropriate to point out, on the day we celebrate the ‘first computer programmer‘, that the shapes were generated with Mathematica software.

The Mathematics gallery is the fourth commission this year as part of the redevelopment of the Science Museum. Wilkinson Eyre has been appointed to create £24 million Medical Galleries; London-based Coffey Architects is designing a new £1.8 million library and research centre in the museum’s Wellcome Wolfson Building; and Muf, a collective of artists, architects and urban designers, was selected to design a £4 million interactive gallery in the museum. Around one third of the building will change over the next few years, marking the biggest transformation of the museum since it was established more than a century ago.

Grand Designs For Information Age

Nick Rolls, Design Project Leader at Universal Design Studio, reflects on the design of the Science Museum’s new Information Age gallery.

Artist's impression of the Information Age gallery. Image credit: Universal Design Studio

Artist’s impression of the Information Age gallery. Image credit: Universal Design Studio

In early 2011, we were commissioned to work on the Science Museum’s new Information Age gallery.

From the outset, we knew this project would create a special challenge. With an impressive range of assets –  200 years of inventions, 800 unique objects and a vast gallery space measuring 2,500m2, this would be a unique gallery within the Science Museum.

One of the biggest challenges we faced was organising the huge empty space into a navigable gallery whilst giving each object and story a platform on which to shine.

We started with the largest and most impressive object of all – the aerial tuning coil from Rugby Radio Station, which we decided to place at the heart of the gallery.

Made from timber and webs of cables, this incredible object looks almost primitive in construction. This ambiguity made it a great tool for us to draw visitors into the centre of the gallery and make them question their preconceptions of modern communications. It is a world away from the common communication devices that spring to mind – mobile phones, micro-chips and digiboxes.

We learnt that the tuning coil was housed underneath a copper shroud – we think to dissipate heat and prevent the timber structure from igniting. This provided us with a material that resonated with the object’s history and a warm, reflective surface for the display. The coil is located where visitors can learn about the transmitter, signal and receiver.

From the centre you can see that the gallery is divided into six networks – each one telling stories from a specific section of communication technology. Placed around the outsides of the gallery, similar to the idea of a town square or plaza, we placed large double height display cases. These display structures are designed to house a vast array of objects.

Floorplan of the Information Age gallery. Image credit: Universal Design Studio

Floorplan of the Information Age gallery. Image credit: Universal Design Studio

These display structures serve several purposes. One function is to hold up the elevated walkway that encircles the gallery. More importantly, they allow visitors to engage with the incredible objects and stories told in each of the six networks. For this reason, they became known as storyboxes. To provide a varied experience, both a producer and a ‘voice’ were assigned to a storybox for each network, creating an installation of their conception.

The sheer quantity of objects on display within the gallery required meticulous planning of the space.

Stories with large numbers of objects fill showcases, which in turn create smaller spaces and routes throughout the gallery. A key concern was to ensure visitors knew where their attention should be focussed, especially in a gallery without a prescribed route.

We crafted a space that used solid forms and open apertures within the gallery, providing clear groups of objects along with vistas from one section to another.

Lastly, we designed a large encircling walkway that loops around the gallery. We introduced this to provide an overview of the space and an alternative perspective of the gallery. We felt it was important for visitors to understand the context of each story within the scheme of the gallery – allowing them to connect objects from one end of the space to the other.

Fundamentally, this is a gallery about incredible objects, people and stories. The format of the gallery plays a supporting role to these awe-inspiring exhibits. We hope visitors will enjoy experiencing the gallery through the space we have designed.

The Information Age gallery will be welcoming visitors from 25 October 2014. For more information visit sciencemuseum.org.uk/informationage.

Drayson Racing Car

Formula E: The Future of Racing

Pippa Hough, Assistant Content Developer in our Contemporary Science team, explores the new Formula E racing series.

Last month, we invited engineers from the Power Electronics Group to the Science Museum to share their latest research with our visitors. They are working on wireless charging systems to power up electric car batteries, and with them came the Drayson Racer, the fastest lightweight electric car in the world. This beautiful, green piece of precision engineering is fast; it broke records at 205mph and can go 0 to 60 in 3 seconds.

This week super speedy cars, much like the Drayson racer, will take part in Formula E; the first ever fully electric racing series, starting off in Beijing. The cars in Formula E aren’t quite as fast as the one we had on display, but with top speeds of 140mph it will definitely be entertaining to watch.

Drayson Racer, the fasted lightweight electric car in the world. Credit: Science Museum

Drayson Racer, the fasted lightweight electric car in the world. Credit: Science Museum

There are a few aspects of the Formula E that make it, in my opinion, the best type of racing there is:

Car Swapping

One of the major issues of electric cars is battery life. The racing cars used in Formula E can’t be charged quick enough at the pit stops so the drivers swap to a fully charged car. Given it’s a race the drivers need to hop out and into the other car within a minute. I think it provides an bonus ‘obstacle course’ like challenge that petrol racing really lacks.

Exotic Locations

Yes Formula 1 has exotic location, but Formula E has raised the game. The races will be in the heart of some of the most stunning capital cities in the world. Starting in the Olympic park in Beijing the championship will travel round to 10 cities including Berlin, Buenos Aires, Miami, and finishing up in central London in June 2015.

Futuristic Sounding

Electric cars engines are virtually silent. There’ll be no need for ear plugs while watching and given the city centre locations the races won’t be bothering the neighbours as much as petrol racing might. The sound Formula E cars make when racing has been described as anything from eerie to futuristic. They’re so quiet the engineers have to be warned with an air horn before the car come into the pit stops so they can get out of the way in time.

Fanboost

There’s virtually no interaction with the drivers for fans of racing, especially compared to other sports. The drivers can’t hear you cheering, not until they’re no the podium and by that time your encouragements don’t make any difference. Not so in Formula E, you can vote for your favourite driver before the race. The three most popular driver’s get a ‘power boost’ for their cars in the last leg of race.

Formula E will drive innovation in electric cars that’ll quickly trickle down to their domestic counterparts. In the not too distant future the wireless charging system the Power Electronics Group showed our visitors could be in parking spots all over the country ready to charge your electric car.

You can find out more about Formula E by watching the video below.

30th Anniversary of DNA Fingerprinting

By Roger Highfield, Director of External Affairs

This fuzzy image, taken on 10 September 1984, launched a revolution; one that sent out shockwaves that can still be felt today. It is the first DNA fingerprint, taken on a Monday morning at the University of Leicester by Alec Jeffreys, now Sir Alec in recognition of his momentous achievement.

The first genetic fingerprint, 1984 © Science Museum / SSPL

The first genetic fingerprint, 1984 © Science Museum / SSPL

The fuzzy pattern that he recorded on an X-ray film was based on genetic material from one of his technicians, Vicky Wilson. At that time, Sir Alec was investigating highly repetitive zones of the human genetic code called “minisatellites”, where there is much variation from person to person. He wanted to study these hotspots of genetic change to find the cause of the DNA diversity that makes every human being on the planet unique.

Gazing at the X-ray film recording Wilson’s minisatellites, he thought to himself: “That’s a mess.”
But then, as he told me, “the penny dropped”. In this mess he stumbled on a kind of fingerprint, one which showed not only which parts of Wilson’s DNA came from her mother and which from her father, but also the unique genetic code that she possessed, one that was shared by no other human being on the planet.

In that Eureka moment, the science of DNA fingerprinting was born.

Sir Alec and his technician made a list of all the possible applications of genetic fingerprinting – but it was his wife, Sue, who spotted the potential for resolving immigration disputes, which in fact proved to be the first application.

An autoradiograph of the first genetic fingerprint, 1984 © Science Museum / SSPL

An autoradiograph of the first genetic fingerprint, 1984 © Science Museum / SSPL

Soon after his discovery, Sir Alec was asked to help confirm the identity of a boy whose family was originally from Ghana. DNA results proved that the boy was indeed a close relation of people already in the UK. The results were so conclusive that the Home Office, after being briefed by the professor, agreed to drop the case and the boy was allowed to stay in the country, to his mother’s immense relief. “Of all the cases,” he recalls, “this is the one that means most to me.’’

Sir Alec is the first to admit that he never realised just how useful his work would turn out to be: in resolving paternity issues, for example, in studies of wildlife populations and, of course, in many criminal investigations (DNA fingerprinting was first used by police to identify the rapist and killer of two teenage girls murdered in Narborough, Leicestershire, in 1983 and in 1986 respectively).

Similar methods were used to establish the identity of the ‘Angel of Death’ Josef Mengele (using bone from the Nazi doctor’s exhumed skeleton), and to identify the remains of Tsar Nicholas II and his family – in the course of which the Duke of Edinburgh gave a blood sample.

Sir Alec told the University recently: “The discovery of DNA fingerprinting was a glorious accident. It was best summarised in a school project that a grandson of mine did years ago: ‘DNA fingerprinting was discovered by my granddad when he was messing about in the lab’. Actually, you can’t describe it better than that – that is exactly what we were doing.”

Sir Alec has long been concerned about the world’s DNA databases. He describes how there needs to be a balance between the state’s rights to investigate and solve crime and an individual’s right to genetic privacy. “I take the very simple view that my genome is my own and nobody may access it unless with my permission.”

As for what happens next, Sir Alec says: ‘I’m now retired and consequently busier than ever.’

A view of the new Science Museum Mathematics Gallery. Credit: Zaha Hadid Architects

Bringing Maths to Life at the Science Museum

Today, we announced an ambitious new mathematics gallery that will open in 2016.

Our new gallery will be designed by the world-renowned Zaha Hadid Architects, who also designed the stunning Aquatics Centre used in the 2012 Olympics in London, and has been made possible by the largest individual donation ever made to the museum, an unprecedented £5 million gift from David and Claudia Harding.

Dame Zaha Hadid, David and Claudia Harding, and Sajid Javid, the Secretary of State for Culture, Media and Sport, joined our Director, Ian Blatchford, and the gallery’s curator, David Rooney, to announce the news this morning.

David Harding, Dame Zaha Hadid, the Rt Hon Sajid Javid MP, Ian Blatchford and Claudia Harding (L-R) announcing the new Maths Gallery.

David Harding, Dame Zaha Hadid, the Rt Hon Sajid Javid MP, Ian Blatchford and Claudia Harding (L-R) announcing the new Maths Gallery.

Ian Blatchford, the Science Museum’s Director, explained his ambition was ‘to deliver the world’s foremost gallery of mathematics both in its collection and its design.’ Dame Hadid described how mathematics, in particular the modelling of turbulence around an aircraft, had inspired the design of the new gallery and she recalled her first visit to the Science Museum, aged 10, describing it as ‘extremely fascinating’.

Maths is too often perceived as a dry and complex, but the new gallery will tell stories that place mathematics at the heart of our lives, exploring how mathematicians, their tools and ideas, have helped to shape the modern world.

The stories told in the gallery will span 400 years of science and mathematics, from the Renaissance to the present day, with objects ranging from intriguing hand-held mathematical instruments to a 1929 experimental aircraft.

A view of the new Science Museum Mathematics Gallery featuring the Handley Page aircraft. Credit: Zaha Hadid Architects

A view of the new Science Museum Mathematics Gallery featuring the Handley Page aircraft. Credit: Zaha Hadid Architects

The Handley Page aircraft is one of the star objects – a 1929 British experimental aircraft with a 12m wingspan, which will be suspended from the gallery ceiling. With civilian air travel expanding rapidly in the 1920s, aircraft manufacturers around the world needed a better understanding of the mathematics of aerodynamics and material stress.

This experimental aircraft, made in Britain by Handley Page and building on aerodynamic work carried out during WWI, was designed to take off and land slowly and steeply without stalling, vital at a time when urban airfields were often shrouded in fog.

A plan diagram of the Mathematics Gallery. The gallery layout follows the Handley Page aeroplane's turbulence field. Credit: Zaha Hadid Architects.

A plan diagram of the Mathematics Gallery. The gallery layout follows the Handley Page aeroplane’s turbulence field. Credit: Zaha Hadid Architects.

Welcoming the £5 million donation, our Director Ian Blatchford described it as a “game-changing gift to the museum”. David Harding has a long-standing relationship with the Science Museum, most recently supporting the museum’s Collider exhibition and tour, the new Information Age gallery and our educational work.

The David and Claudia Harding Mathematics Gallery will open in 2016, and will be curated by David Rooney, who also curated our award-winning Codebreaker exhibition about the life of Alan Turing. The gallery is part of the Science Museum’s Masterplan, which will transform around a third of the museum over the next five years.

V2 rocket on launch pad in Germany, 1945.

V-2: The Rocket that Launched the Space Age

This week (8 September 2014) marks 70 years since the first V-2 rocket attack on London. Curator Doug Millard reflects on the rocket that helped start the space age.  

On 8th September 1944 Professor Jones and his colleague turned suddenly to each other in their Whitehall office and in unison said, ‘That’s the first one’. London had experienced four years of explosions from Luftwaffe bombs so this latest blast was hardly remarkable. But what they had noticed was the second bang following immediately after the first: a double detonation.

For over a year Jones, as Assistant Director of Intelligence (Science) at the Air Ministry, and his team had been assembling evidence for the existence of a new type of German weapon – one quite unlike anything developed before.

The bombs dropped during the blitz had been carried by manned aircraft; more recent attacks came from pilotless planes nicknamed doodlebugs or buzz bombs (on account of their leisurely flight across the sky and the staccato drone they made). Both could be detected on the way to their targets and warnings issued for the populace to seek shelter.

The new weapon gave no such warning: its exploding signalled that it had already arrived. It was a rocket that dropped from the sky at twice the speed of sound: one explosion was the warhead detonating; the other the sonic boom of the rocket’s arrival.

A V-2 rocket on display in the Science Museum's Making the Modern World gallery.

A V-2 rocket on display in the Science Museum’s Making the Modern World gallery. Credit: Science Museum

It had been developed at the Peenemunde research establishment on the Baltic coast line of Germany. Designated the Aggregat 4 or A4, it was the latest in a series of new rockets designed by the German Army. It stood 14 metres high and weighed twelve and a half tonnes. It had a range of over 300 kilometres and touched space as it climbed to a height of 88 kilometres before dropping in a ballistic path on to its target. Joseph Goebbels renamed it Vergeltungswaffe 2 (Vengeance Weapon 2), which was later abbreviated to V-2.

Thousands of V-2s were launched during the war, most aimed at central London. They steered themselves and could not be jammed with radio signals. So even when a rocket’s launch was spotted by allied forces there was nothing that could be done to counter its flight. The V-2 was the harbinger of the Cold War’s missile age and the four minute warning.

A gyrocompass used to guide the flight path of V-2 rockets.

A gyrocompass used to guide the flight path of V-2 rockets. Credit: Science Museum / SSPL

The V-2’s guidance was innovatory – it employed a system of gyroscopes that registered any deviation in flight – but by today’s standards the missile’s accuracy was very poor. Most landed kilometres off target. Nevertheless, it was clear to many that this new weapon represented a future of strategic warfare; one in which far more powerful missiles mated to nuclear warheads would cover intercontinental distances on the way to their targets. To others it signalled the dawning of a space age when still bigger rockets would counter the pull of gravity and place satellites in orbits around the Earth.

After the war the Allies acquired the V2 technology and many of the rocket programme’s leading scientists and engineers. The Soviets constructed their own version at the start of a research programme that led eventually their own R-7 rocket which put Sputnik – the world’s first artificial satellite – into orbit.

The Americans took many surplus V-2s along with the rocket programme’s technical director Wernher von Braun. The Redstone rocket that launched the first American into space was von Braun’s derivative of his V-2. Eight years later his massive Saturn V rocket launched astronauts Armstrong, Aldrin and Collins to the Moon.

The missile Jones heard had come down in Chiswick, west London. It killed three people and destroyed a row of houses. Over the next months many more were launched with most falling in south-eastern England and killing thousands of people (a map of V-2 rocket strikes across London and surrounding counties can be seen here). In a grotesque irony the V-2 killed many more in the course of its manufacture by slave labour from the Mittelbau-Dora concentration camp in central Germany.

The final V-2 landed south of London in Orpington on March 27, 1945 killing one person – the last civilian fatality of the war in mainland Britain.

For more information, visit the Science Museum’s Making the Modern World gallery, where a full size V-2 rocket can be seen on display.

Farnborough International Airshow booking at the Science Museum

By Ian Blatchford, Director, Science Museum.

I have recently received feedback from a campaign group about the welcome reception for this year’s Farnborough International Airshow taking place at the Science Museum. Given the strong views some people have about this booking, I wanted to provide some context about the museum’s commercial activities.

As Director, I have a responsibility to balance financial sustainability with achieving our goal to be the leading international museum championing the understanding, enjoyment and prestige of science. The financial challenge faced by our museums has grown in recent years when the tough economic climate has seen our Government funding reduced by more than 30 per cent in real terms since 2010.

Our response to this fiscal challenge has involved a combination of reducing our running costs and increasing the income we generate. Alongside philanthropic support from individuals and companies we continue to expand the range and scope of our commercial activities, including offering spaces for hire for corporate events outside the hours when the museum is open to the public.

Among the many corporate events taking place at the museum this year is the welcome reception for Farnborough International Airshow. The show is a key event for the UK aerospace industry, a subject area in which the Science Museum holds major collections and an industry which is a prominent investor in science and engineering. We treated this event as we would a booking from any other legitimate organisation.

The revenue generated by bookings such as this plays an important role in the funding mix that enables us to remain free to millions of visitors, run the biggest educational programme of its kind, and allows us to curate world-class exhibitions.

I respect people’s right to hold different views but I believe we are making the right decisions to secure the long-term future of the museum for the public good.