Category Archives: Science news

The Echo of Creation – Astronomers Hear the B of the Big Bang

Dr. Harry Cliff, Curator of our Collider exhibition and the first Science Museum Fellow of Modern Science explores one of the most important discoveries of a generation.

In what has been hailed as one of the most important discoveries of a generation, astronomers working on the BICEP2 telescope at the South Pole have announced that they have detected gravitational tremors from the birth of our Universe imprinted across the sky. The result is the first direct evidence for inflation, the theory that the Universe expanded unimaginably fast, an infinitesimal instant after time zero.

The BICEP2 telescope at the Amundsen-Scott South Pole station.

The BICEP2 telescope at the Amundsen-Scott South Pole station. Credit: BICEP2

The theory of inflation states that the Universe grew in volume by about a factor of at least 1078, a number so vast that it’s impossible to comprehend (its roughly equal to the number of atoms in the universe). This phenomenal expansion took place in an incredibly short time, in about ten billionths of a trillionth of a trillionth of a second, at a time when the Universe was cold, dark and empty. To put this in context, if the full stop at the end of this sentence were to grow by the same factor, it would end up about a hundred times larger than our galaxy.

Inflation is a crucial part of modern cosmological theories and solves many serious problems with the traditional Big Bang model, but so far there has been no direct evidence that it actually happened. However, inflationary theories predict that this violent expansion would have created ripples in space and time known as gravitational waves. These ripples would then have echoed through the cosmos, leaving a mark on the oldest light in the Universe, the Cosmic Microwave Background (CMB).

Discovered fifty years ago by the American radio astronomers Arno Penzias and Robert Wilson (who at first mistook it for pigeon poo in their receiver), the CMB is the remnant of the light emitted 380,000 years after the Big Bang, when the Universe cooled enough for atoms to form and for light to travel freely across space. The discovery of the CMB was one of the most important events in the history of science, providing convincing evidence that the Universe began in a violent hot expansion known as the Big Bang. This ancient light has been stretched from a searing hot 3000 Kelvin to a freezing 2.7 Kelvin by the expansion of space, leaving it as a faint microwave signal coming from the entire sky.

The BICEP2 telescope is based at the Amundsen-Scott station at the geographic South Pole, where temperatures plummet to below minus 70 degrees Celsius in the Antarctic winter and the base is buffeted by blizzards and gale force winds. Despite these incredibly hostile conditions, the BICEP2 telescope is in the perfect location to study the CMB.

The South Pole is around 3000 metres above sea level, and the driest place on Earth, meaning that there is relatively little atmospheric water vapour that would otherwise screen out the CMB signal. This comes with the added advantage that BICEP2 is able to scan the same small piece of sky all year round, by effectively looking straight down from the bottom of the planet to the point known as the celestial south pole.

BICEP2 astronomers spent almost three years scanning the CMB in incredible detail, but yesterday the freezing conditions and hard work paid off spectacularly as they revealed subtle twists in the CMB, a smoking gun for gravitational waves from inflation. In fact, the BICEP2 astronomers were surprised by just how strong the signal was. “This has been like looking for a needle in a haystack, but instead we found a crowbar,” said co-leader Clem Pryke.

Twists in the cosmic microwave background that provide evidence for inflation

Twists in the cosmic microwave background that provide evidence for inflation. Credit BICEP2

Although the result hasn’t been peer reviewed or published in a scientific journal yet, most astronomers agree that the findings look solid. The fifty-strong BICEP2 team have been sitting on their historic result since the end of 2012, and have spent more than a year checking and rechecking to ensure they have taken account of every possible effect, from gravitational lensing to space dust, which might have given a false result.

So what does this mean for our understanding of our Universe? The BICEP2 result is really three Nobel Prize-worthy discoveries in one. They have found the first convincing evidence that inflation really happened, giving science its first glimpse of the moment in which the universe came into being. Second, they have found the strongest evidence yet for gravitational waves, the last prediction of Einstein’s theory of general relativity to be verified, and something that astronomers have been searching for for decades. Third, and by no means least, this discovery demonstrates a deep connection between quantum mechanics and gravity, giving hope that we may one day find evidence of a theory of everything, a theory that would unite our theory of particles and forces with our theory of cosmology and gravity. This would undoubtedly be the greatest prize in science.

If confirmed by other observatories, this incredible result will go down in history as one of the most important scientific discoveries of the 21st century, eclipsing even CERN’s discovery of the Higgs boson in 2012. Nobel Prizes will almost certainly follow. More importantly, this result opens up a new window through which astronomers and cosmologists may, for the first time, glimpse the very moment of creation.

Explore more about astronomy in our Cosmos and Culture gallery and discover the mysteries of deep space in our Hidden Universe 3D IMAX film.

Happy 25th Birthday World Wide Web!

Tilly Blyth, Lead Curator for Information Age, reflects on how the World Wide Web came into existence.

It was 25 years ago today that the World Wide Web was born. Only a quarter of a century ago, but in that short time it has transformed our world. In a recent Great British Innovation Vote, musician Brian Eno said that ‘no technology has been so pervasive so quickly as the internet’.

On 12 March 1989, the British computer scientist Sir Tim Berners-Lee wrote his influential paper “Information Management: A Proposal” and circulated it to colleagues at CERN, the European Organization for Nuclear Research. Scientists from all over the world were brought together at CERN to conduct research, but Berners-Lee identified that there was a problem with the way information was managed and shared between them. His proposal suggested a way of linking documents through a system of hypertext.

Rather wonderfully, Berners-Lee’s boss, Mike Sendall commented that the proposal was ‘Vague but exciting…’ but he agreed to purchase a NeXT computer. The machine was to become the world’s first web server and Berners-Lee used it to build the first ever website. Today, the only evidence on the machine of its important history is a torn sticker that says: “This machine is a server. DO NOT POWER IT DOWN!!”

To celebrate the birthday of the Web, from today we are putting Tim Berners-Lee’s NeXT cube computer on display in our Making the Modern World gallery. In Autumn 2014 it will move into our new Information Age gallery, to play a leading role in the stories of the last 200 years of information and communication technologies.

Baroness Martha Lane-Fox (co-founder of Lastminute.com) visiting the Science Museum to unveil the NeXT cube – the original machine on which Sir Tim Berners-Lee designed the World Wide Web, at an event to mark 25 years since Berners-Lee submitted the first proposal for the web on 12 March 1989 at CERN.

Baroness Martha Lane-Fox visiting the Science Museum to unveil the NeXT cube – the original machine on which Sir Tim Berners-Lee designed the World Wide Web. Credit Science Museum.

Yesterday, we celebrated the arrival of the NeXT computer at the Museum and the impending anniversary, with a reception attended by Martha Lane Fox and Rick Haythornthwaite, Chair of the Web Foundation.

But a birthday for the Web is not just a chance to reflect on the past, but to look towards the future. What kind of Web do we want? Currently only 3 in 5 people across the world have access to the Web. Do we want a tool that is open and accessible to anyone? And do we want to control our public and private data? How can we ensure that the Web isn’t only a device for a few companies, but gives us all rights to achieve our potential? Through the #web25 hashtag Tim Berners-Lee is inviting us all to share our thoughts.

Discover more about how the web has shaped our world in the new Information Age gallery, opening in Autumn 2014.

A Nobel Tradition

Content Developer Rupert Cole explores the most famous science prize of all, and some of its remarkable winners. 

Today, science’s most prestigious and famous accolades will be awarded in Stockholm: the Nobel Prize.

Before we raise a toast to this years’ winners in physics, Peter Higgs and Belgian François Englert, let’s take a look back at the man behind the Prize, and some of its winners.

Alfred Nobel

A Swedish explosives pioneer who made his millions from inventing dynamite, Alfred Nobel left in his will a bequest to establish an annual prize for those who have “conferred the greatest benefit to mankind”, across five domains: physics, chemistry, physiology or medicine, literature and peace. To this end, he allocated the majority of his enormous wealth.

Alfred Nobel. Credit: Science Museum / SSPL

Alfred Nobel. Credit: Science Museum / SSPL

When Nobel’s will was read after his death in 1896, the prize caused an international controversy. Unsurprisingly, Nobel’s family were not best pleased, and vigorously opposed its establishment. It took five years before it was finally set up and the first lot awarded – the 1901 physics accolade going to Wilhelm Rontgen for his 1895 discovery of x-rays.

Paul Dirac’s maternal mortification

When the phone rang on 9 November 1933, the exceptionally gifted yet eccentric Paul Dirac was a little taken back to hear a voice from Stockholm tell him he had won the Nobel Prize.

The looming press attention, which had always surrounded the Nobels, made the reclusive Dirac consider rejecting the award, until Ernest Rutherford – JJ Thomson’s former student and successor as Cavendish professor – advised him that a “refusal will get you more publicity”.

Under different circumstances Rutherford had been similarly “startled” when he found out he was to be given a Nobel – a physicist through and through, he was awarded the 1908 Prize in Chemistry, joking his sudden “metamorphosis into a chemist” was very unexpected.

Dirac shared the 1933 physics prize with Erwin Schrödinger – famed for his eponymous equation and dead-and-alive cat – for their contributions to quantum mechanics. Each was allowed one guest at the award ceremony held at the Swedish Royal Academy of Science. Schrödinger brought his wife, Dirac brought his mother.

Quantum theorists: Wolfgang Pauli and Paul Dirac, 1938. Credit: CERN

Quantum theorists: Wolfgang Pauli and Paul Dirac, 1938. Credit: CERN

Florence Dirac did what all good mothers do: embarrass her son in every way imaginable. The first incident came at a station café in Malmo, where in this unlikely setting an impromptu press conference took place.

Dirac, who had been described by the British papers as “shy as a gazelle and modest as a Victorian maid,” was asked “did the Nobel Prize come as a surprise?” Before he could answer, Dirac’s mother butted in: “Oh no, not particularly, I have been waiting for him to receive the prize as hard as he has been working.”

The next embarrassment came when Mrs Dirac failed to wake up when the train reached Stockholm. She was ejected by a guard, who had thrown her garments and belongings out of the carriage window. The Diracs arrived late, and meekly hid from the attention of the welcoming party – who had been wondering where they were.

The third and final maternal faux pas came at Stockholm’s Grand Hotel. The pair had been booked into the finest room – the bridal suite. Mrs Dirac, displeased, demanded a room of her own, which Dirac paid for out of his own pocket. It doesn’t matter if you’ve co-founded quantum mechanics, predicted antimatter and won the Nobel Prize; mothers will be mothers.

Peter’s Pride

Like other humble laureates before him, Peter Higgs wished to duck out of the press furore surrounding the Nobel. At the time of the announcement on the 8th October there was a nail-biting delay. The cause? The Nobel committee could not get hold of Higgs, who had turned his phone off and planned to escape to the Scottish Highlands.

As Peter Higgs revealed to me at the opening of the Collider exhibition at the Science Museum, if it was not for a dodgy Volkswagen beetle or public transport, Peter would have made it to the Highlands on Nobel day. Instead, he just laid low in Edinburgh.

Peter Higgs (right) with friend Alan Walker and the personalised bottles of London Pride at Collider opening. Credit: Science Museum.

Peter Higgs (right) with friend Alan Walker and the personalised bottles of London Pride at Collider exhibition opening. Credit: Science Museum.

At the Collider launch last month, we celebrated with Higgs in the appropriate way: over a personalised bottle of London Pride ale – the same beverage he chose in favour of champagne on the flight home from CERN’s public announcement of the Higgs boson discovery. So, when Englert and Higgs receive the honour today, let’s all raise two glasses: an English Ale and a Belgian Blonde!

For more on many of the Nobel prize-winning discoveries in physics history, including those of Dirac, Englert and Higgs, visit the Collider exhibition at the Science Museum.

Obituary: Fred Sanger (1918 – 2013)

Director of External Affairs, Roger Highfield, remembers Nobel laureate Fred Sanger.

The biochemist and Nobel laureate Fred Sanger would joke that ‘I am all right at the thinking, but not much good at the talking.’ Despite his huge influence, Sanger also once said that: ‘I am not academically brilliant.’

Frederick Sanger. Credit: Wikipedia

Frederick Sanger. Credit: Wikipedia

I met him for the first time among the audience of a Wellcome press conference in London and, not once in our chat about human genomics, did he let slip who he was and the landmark contribution that he had made to the field.

In fact this modest man was one of the greatest innovators of all time with his emphasis on developing new techniques, notably DNA sequencing, the ability to read the genome, or genetic recipe, of an organism while working at the Medical Research Council’s Laboratory of Molecular Biology in Cambridge.

Ian Blatchford, Director of the Science Museum, commented on hearing news of his death that  Sanger was a ‘giant in genetics, who had an astonishing capacity to crack some of the most challenging problems in biology. His passing marks the end of an era in modern genetics.’

The American genome pioneer and synthetic biologist, Craig Venter of the J. Craig Venter Institute in Rockville and La Jolla, said on hearing the sad news: ‘Fred Sanger was one of the most important scientists of the 20th century. He twice changed the direction of the scientific world, first with the sequencing of insulin, proving that proteins were linear strings of amino acids and second with his then new method of sequencing DNA, which led to the field of genomics. His contributions will always be remembered.’

Most sequencing performed for the past decades is a direct extension of the methods that were pioneered by Fred Sanger. He unveiled his first partial DNA sequence in May 1975 and went on to deliver the first complete determination of the sequence of a DNA molecule: the 5375 ‘letters’ in the genome of a bacterial virus called phi-X174.

This machine, developed in 1987, uses the Sanger method for DNA sequencing. Credit: Science Museum

This machine, developed in 1987, uses the Sanger method for DNA sequencing. Credit: Science Museum

The DNA reading method that Sanger developed in Cambridge with Alan Coulson required the manufacture of lots of copies of the DNA molecule using an enzyme called DNA polymerase. For the polymerase to replicate DNA it needs DNA building blocks – molecules called nucleotides – which correspond to the four ‘letters’ of the genetic alphabet.

The enzyme reads from each end of the original molecule to make new copies. For sequencing, Sanger added another ingredient: molecules called ‘terminator nucleotides’, each radioactively-labelled, which are so named because they stop the polymerase when they are incorporated in the growing copy. As a consequence, the enzyme incorporates a terminator in the growing DNA chain, halting the process and marking the end of the growing chain with a radioactive molecule as a full stop.

Because this interruption occurs at any stage of the process of copying vast numbers of DNA molecules in the test tube, a mixture is produced of DNA fragments of varying lengths, each finishing with a radioactively-marked C, G, A or T, depending on which base had been labelled.

An electric field was used to drive these fragments through a gel to separate the DNA molecules according to their size and reveal the sequence: the largest pieces of DNA take more time to migrate through the gel. Because the radioactive label on all four terminators produces the same black mark on an X ray film, Sanger had to carry out four individual experiments, one for each different letter of the code, on four adjacent tracks on the same gel. When the genetic fragments separate, one track shows the DNA fragments that end with a C, one those that end with a G and so on.

Then Sanger and his colleagues studied the film, starting with the first band from the four letter tracks, moving to where the next closest band appeared. In this way, they could read the digital recipe of life. If the first, smallest, piece of DNA was in the C track, for example, then C was the first letter. If the next black mark was in the A track, then an A followed.

Sanger sequenced the 17,000 or so letters of DNA in the human mitochondrion, the energy factory found in our cells. This feat can be regarded the first human genome project. He won the Nobel prize for this work in 1980 but it was far from his first major award.

Frederick Sanger used this equipment to study the structure of insulin by electrophoresis in the 1950s. Credit: Science Museum

Fred Sanger used this equipment to study the structure of insulin by electrophoresis in the 1950s. Credit: Science Museum

He had been given his first Nobel prize in 1958, for his research on the structure of proteins, when he worked out the order of the 50 or so amino acids that make up the insulin molecule. This work revealed how DNA specified linear strings of amino acids in proteins, and that proteins were not agglomerations of closely-related substances, as many had thought in the first half of the 20th century, but were indeed a single chemical.

The world has lost a gene genius.

Discover more about genetics in the Science Museum’s Who Am I? gallery.

3D printing – an explosion of creativity!

Suzy Antoniw, Content Developer in the Contemporary Science Team, looks at the creation of a new exhibition on 3D printing.

What can make impossible shapes solidly real and create unique, one-off medical treatments that could change your life? A 3D printer of course!

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

Around nine months ago we were given the exciting challenge of creating 3D: Printing the Future, a new Contemporary Science exhibition to show off the real-life capabilities of these hugely hyped machines and highlight the latest 3D printing research.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer. Image credit: Science Museum

But hang on, what exactly is a 3D printer? Even if you’ve read stories about them in the news you probably don’t have one sitting on your desk just yet. So here’s our definition: A 3D printer is a manufacturing machine that turns 3D computer data into a physical object, usually by building it in layers. They come in a variety of types that range from simple consumer models to sophisticated industrial printers.

A prosthetic arm concept  made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

A prosthetic arm concept made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

As well as covering the basics, we decided that our exhibition should focus on the incredible things that 3D printers can create – such as replacement body organs and teeth, that could make a difference to the lives of our visitors.

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printers have been around for decades, so what’s changed? In recent years the patents on simple 3D printing technologies have run out. 3D printers have become available to more people in the form of affordable consumer models, or even as open source plans freely available on the internet.

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

This new freedom to invent has generated an explosion of creativity. And it’s not just hackers, tinkerers and makers who’ve felt the benefits of this new breath of life for engineering and design, but established industry and academia too. So how do you represent a diverse and dynamic explosion of creativity?

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

In July we began collecting 3D printed stuff for what has been known as ‘an explosion’, our ‘mass display’, ‘the wave’, ‘the wall’ and (my favourite) a ‘tsunami of objects’. The display contains over 663 objects – the largest number we’ve ever acquired for a Contemporary Science exhibition, thanks to generous loans, donations and the enthusiasm of the maker community.

Among the amazing ‘wave’ of objects you can see a display of 150 miniature 3D printed people – visitors who volunteered to have themselves scanned in 3D at the Museum over the summer holidays. Look closely at the wall and you may spot actress Jenny Agutter reading her script, model Lily Cole and BBC Radio 4 presenter Evan Davis - with his arm in a sling!

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

The free exhibition is open to the public from 9 October and will run for nine months.

The last particle?

Could the Higgs be the end of particle physics? We’re still a long way from answering one of the biggest questions of all, says Dr Harry Cliff, Head of Content on our Collider exhibition.

The 2013 Nobel Prize in Physics has been awarded to François Englert and Peter Higgs for their work that explains why subatomic particles have mass. They predicted the existence of the Higgs boson, a fundamental particle, which was confirmed last year by experiments conducted at CERN’s Large Hadron Collider.

But today’s celebrations mask a growing anxiety among physicists. The discovery of the Higgs boson is an undoubted triumph, but many note that it hasn’t brought us any closer to answering some of the most troubling problems in fundamental science.

A senior physicist went so far as to tell me that he was “totally unexcited by the discovery of the Higgs boson”. Though not the typical reaction, this discovery threatens to close a chapter of 20th century physics without a hint of how to start writing the next page.

Until July last year, when physicists at the Large Hadron Collider (LHC) announced its discovery, the Higgs boson remained the last missing piece of the Standard Model of particle physics, a theory that describes all the particles that make up the world we live in with stunning accuracy. The Standard Model has passed every experimental test thrown at it with flying colours, and yet has some rather embarrassing holes.

According to astronomical measurements, the matter described by the Standard Model that makes up the stars, planets and ultimately us, only accounts for a tiny fraction of the universe. We appear to be a thin layer of froth, floating on top of an invisible ocean of dark matter and dark energy, about which we know almost nothing.

Worse still, according to the Standard Model, we shouldn’t exist at all. The theory predicts that, after the Big Bang, equal quantities of matter and antimatter should have obliterated each other, leaving an empty universe.

Both of these are good scientific reasons to doubt that the Standard Model is the end of the story when it comes to the laws of physics. But there is another, aesthetic principle that has led many physicists to doubt its completeness – the principle of “naturalness”.

The Standard Model is regarded as a highly “unnatural” theory. Aside from having a large number of different particles and forces, many of which seem surplus to requirement, it is also very precariously balanced. If you change any of the 20+ numbers that have to be put into the theory even a little, you rapidly find yourself living in a universe without atoms. This spooky fine-tuning worries many physicists, leaving the universe looking as though it has been set up in just the right way for life to exist.

The Higgs’s boson provides us with one of the worst cases of unnatural fine-tuning. A surprising discovery of the 20th century was the realisation that empty space is far from empty. The vacuum is, in fact, a broiling soup of invisible “virtual” particles, constantly popping in and out of existence.

The conventional wisdom states that as the Higgs boson passes through the vacuum it interacts with this soup of virtual particles and this interaction drives its mass to an absolutely enormous value – potentially up to a hundred million billion times larger than the one measured at the LHC.

Theorists have attempted to tame the unruly Higgs mass by proposing extensions of the Standard Model. The most popular of which is “supersymmetry”, which introduces a heavier super-particle or “sparticle” for every particle in the Standard Model. These sparticles cancel out the effect of the virtual particles in the vacuum, reducing the Higgs mass to a reasonable value and eliminating the need for any unpleasant fine-tuning.

Supersymmetry has other features that have made it popular with physicists. Perhaps its best selling point is that one of these sparticles provides a neat explanation for the mysterious dark matter that makes up about a quarter of the universe.

Although discovering the Higgs boson may have been put forward as the main reason for building the 27km Large Hadron Collider (LHC), what most physicists have really been waiting for is a sign of something new. As Higgs himself said shortly after the discovery last year, “[The Higgs boson] is not the most interesting thing that the LHC is looking for”.

So far however, the LHC has turned up nothing.

If supersymmetry is really responsible for keeping the Higgs boson’s mass low, then sparticles should show up at energies not much higher than where the LHC found the Higgs. The fact that nothing has been found has already ruled out many popular forms of supersymmetry.

This has led some theorists to abandon naturalness altogether. One relatively new idea known as “split-supersymmetry” accepts fine-tuning in the Higgs mass, but keeps the other nice features of supersymmetry, like a dark matter particle.

This may sound like a technical difference, but the implications for the nature of our universe are profound. The argument is that we live in a fine-tuned universe because it happens to be one among an effectively infinite number of different universes, each with different laws of physics. The constants of nature are what they are because if they were different atoms could not form, and hence we wouldn’t be around to wonder about them.

This anthropic argument is in part motivated by developments in string theory, a potential “theory of everything”, for which there are a vast number (roughly 10500) different possible universes with different laws of physics. (This huge number of universes is often used as a criticism of string theory, sometimes derided as a “theory of everything else” as no one has so far found a solution that corresponds to the universe we live in.) However, if split-supersymmetry is right, the lack of new physics at the LHC could be indirect evidence for the existence of the very multiverse anticipated by string theory.

All of this could be rather bad news for the LHC. If the battle for naturalness is lost, then there is no reason why new particles must appear in the next few years. Some physicists are campaigning for an even larger collider, four times longer and seven times more powerful than the LHC.

This monster collider could be used to settle the question once and for all, but it’s hard to imagine that such a machine will get the go ahead, especially if the LHC fails to find anything beyond the Higgs.

We are at a critical juncture in particle physics. Perhaps after it restarts the LHC in 2015, it will uncover new particles, naturalness will survive and particle physicists will stay in business. There are reasons to be optimistic. After all, we know that there must be something new that explains dark matter, and there remains a good chance that the LHC will find it.

But perhaps, just perhaps, the LHC will find nothing. The Higgs boson could be particle physics’ swansong, the last particle of the accelerator age. Though a worrying possibility for experimentalists, such a result could lead to a profound shift in our understanding of the universe, and our place in it.

Discover more about the Higgs boson and the world’s largest science experiment in our new exhibition, Collider, opening on 13th November 2013.

This article first appeared on The Conversation.

Celebrate the Nobel Prize at the Science Museum

Roger Highfield, Director of External Affairs at the Science Museum, celebrates the 2013 Nobel Prize for Physics ahead of the opening of our Collider exhibition next month.      

Congratulations to Briton Peter Higgs and Belgian François Englert, winners of the 2013 Nobel Prize for Physics “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.”

A few minutes ago, after an unusual delay, the Royal Swedish Academy of Sciences announced the winners of the physics prize in Stockholm, ending this chapter of the quest for new elementary particles, the greatest intellectual adventure to date.

Ian Blatchford, Director of the Science Museum, comments: “That it has taken decades to validate the existence of the Higgs Boson illustrates the remarkable vision of the theoretical work that Higgs, Francois Englert and others did with pen and paper half a century ago, one that launched an effort by  thousands of scientists and inspired a staggering feat of engineering in the guise of the Large Hadron Collider.

What is the Higgs? Here’s all you need to know, in just 90 seconds, from Harry Cliff, a Cambridge University physicist working on the LHCb experiment and the first Science Museum Fellow of Modern Science

Although the identity of the winners has been a closely-guarded secret, many have speculated that those who played a central role in discovery of the long-sought Higgs, notably the emeritus Edinburgh professor himself, were leading contenders for a place in history.

The Science Museum has been so confident that the Large Hadron Collider would change our view of nature that we have invested more than £1 million, and worked closely with the European Organization for Nuclear Research, CERN, to celebrate this epic undertaking with its new exhibition, Collider: step inside the world’s greatest experiment, which opens to the public on 13 November. 

Here Higgs explains how the Large Hadron Collider works during a visit to what is now Cotham School, Bristol, where he was once a pupil.

In July 2012, two separate research teams at CERN’s £5 billion Large Hadron Collider reported evidence of a new particle thought to be the Higgs boson, technically a ripple in an invisible energy field that gives most particles their mass.

This discovery represented the final piece of the Standard Model, a framework of theory developed in the late 20th century that describes the interactions of all known subatomic particles and forces, with the exception of gravity.

Nima Arkani-Hamed, a leading theoretical physicist at the Institute for Advanced Study in Princeton who will attend the launch of Collider, bet a year’s salary the Higgs will be found at the LHC.

Another speaker at the Collider launch, the world’s most famous scientist, Prof Stephen Hawking, lost a $100 bet he made against the discovery (though he is adamant that Higgs deserves the Nobel Prize).

Higgs, who refuses to gamble, told me just before the LHC powered up that he would have been puzzled and surprised if the LHC had failed in its particle quest. “If I’m wrong, I’ll be rather sad. If it is not found, I no longer understand what I think I understand.”

When Higgs was in the CERN auditorium last year to hear scientists tell the world about the discovery, he was caught reaching for a handkerchief and dabbing his eyes.  On the flight home, he celebrated this extraordinary achievement with a can of London Pride beer.

The Science Museum hoped to have the can, now deemed a piece of history Alas, Higgs had dumped it in the rubbish before we could collect it. However, the museum does possess the champagne bottle that Higgs emptied with his friends the night before the big announcement.

The champagne bottle Peter Higgs drank from, the night before the Higgs boson discovery was announced to the world. Credit: Science Museum

The champagne bottle Peter Higgs drank from, the night before the Higgs boson discovery was announced to the world. Credit: Science Museum

The modest 84-year-old  is now synonymous with the quest: the proposed particle was named the Higgs boson in 1972.

But there have been demands that the particle be renamed to acknowledge the work of others. Deciding who should share this Nobel has been further complicated because a maximum of three people only can be honoured (prompting many to question the criteria used by the Nobel committee).

The LHC, the world’s most powerful particle accelerator, is the cumulative endeavour of around ten thousand men and women from across the globe. In recognition of this the Collider exhibition will tell the behind-the-scenes story of the Higgs discovery from the viewpoint of a young PhD student given the awesome task of announcing the discovery to her colleagues (though fictional, the character is based on Mingming Yang of MIT who is attending the launch).

However, although one suggestion is to allow the two research teams who discovered the Higgs boson to share the accolade, the Nobel committee traditionally awards science prizes to individuals and not organizations (unlike the Nobel Peace Prize).

Instead, the Nobel committee honoured the theoreticians who first anticipated the existence of the Higgs.

Six scientists published the relevant papers in 1964 though, as Belgium’s Robert Brout died in 2011, there were five contenders (the Nobel Prize cannot be given posthumously).

In August 1964, François Englert from the Free University of Brussels with Brout, published their theory of particle masses. A month later, while working at Edinburgh University, Higgs published a separate paper on the topic, followed by another in October that was – crucially – the first to explicitly state the Standard Model required the existence of a new particle. In November 1964, American physicists Dick Hagen and Gerry Guralnik and British physicist Tom Kibble added to the discussion by publishing their own research on the topic.

Last week, Prof Brian Cox of Manchester University, who works at CERN, said it would be ‘odd and perverse’ not to give the Nobel to Peter Higgs, and also singled out Lyn ‘the atom’ Evans, the Welshman in charge of building the collider, as a candidate.

And the two likeliest winners were named as Peter Higgs – after whom the particle was named – and François Englert, according to a citation analysis by Thomson Reuters.

Today’s announcement marks the formal recognition of a profound advance in human understanding, the discovery of one of the keystones of what we now understand as the fundamental building blocks of nature.

Discover more about the Higgs boson and the world’s largest science experiment in our new exhibition, Collider, opening 13th November 2013.

Mission to Mars

Tanya, our Learning Resources Project Developer, blogs on potential missions to Mars and discussing them in the classroom. For more on our Talk Science teachers’ courses, click here.

We are in an interesting period of space travel; news from the past year has been filled with findings from the Curiosity rover and stories of possible manned missions to Mars. For me the release of Mars Explorer Barbie confirmed ‘Mars Mania’ is upon us. There are big questions surrounding the ethics and feasibility of sending humans to Mars, however proposals keep emerging which hope to do so, many of which are private enterprises.

One interesting example is the Inspiration Mars Foundation, which in 2018 plans to perform a Mars flyby, over a period of 501 days, with a married couple as its crew. Another, Mars One, seems to have really captured the public’s imagination.

It may sound like science fiction, but Mars One hopes to establish a colony on Mars by 2023. The plan is to use existing technologies, such as solar power and water recycling, to create a permanent habitat for the astronauts. Over the next ten years they will send rovers, satellites, living units, life support systems and supply units to Mars ready for the arrival of the first settlers in 2023.

Three generations of Mars rovers

Three generations of Mars rovers, including Curiousity far right. Image Credit: NASA/JPL-Caltech

Applications for the first round of astronauts closed recently; over 200,000 people, from more than 140 countries applied. Six teams of four will be selected for training, with further opportunities opening every year. The crew will learn medical procedures, how to grow food on Mars, and how to maintain the habitat and rovers. In 2024 a second crew will depart Earth, with four new settlers arriving every two years until 2033, when 20 people should be living on Mars.

This incredibly challenging mission is estimated to cost $6 billion. Interestingly part of the funding will come from a reality TV show which will follow the teams from their recruitment through to their first few years living on Mars. In addition to high costs the team will face Mars’ fiercely hostile environment; high levels of radiation, low gravity, little atmosphere, high impact from the solar winds, and water sources frozen underground. If successful the astronauts will make history, but it won’t be easy and they will never breathe fresh air again.

Picture of mars, taken by the Spirit rover.  Image credit: NASA/JPL/Cornell

Picture of mars, taken by the Spirit rover. Image credit: NASA/JPL/Cornell

The mission throws up many interesting questions from both a personal and technological perspective. Maybe try hosting your own debate on the subject, or if you’re a teacher, you could try raising the issues with your students using one of our discussion formats.

Should we send humans to Mars?
How would you feel if a loved one volunteered for a one-way mission to mars?
Do you think that current technologies could sustain life on Mars?

If you want to build your skills for using discussion in the classroom further, we are running the Talk Science teachers’ course in London on 29th November. For details of how to sign up click here.

Cultured Beef

Roger Highfield, Director of External Affairs at the Science Museum Group, writes about the world’s first lab-grown or ‘in vitro’ hamburger. Would you eat the burger? Vote here 

The world’s first lab-grown or ‘in vitro’ hamburger was cooked and eaten today at a press conference in London for a demonstration project to show the future of food, funded by Google’s Sergey Brin.

The cultured cell burger, estimated to be worth around  £220,000, was created by Prof Mark Post of Maastrict University in a project that took him two years.

A burger made from Cultured Beef. Credit: David Parry/PA

A burger made from Cultured Beef. Credit: David Parry/PA

The burger was cooked in butter by chef Richard McGowan before an audience of journalists, then subject to a taste test by US-based food author Josh Schonwald and Austrian food researcher Hanni Ruetzler.

The verdict? Close to meat, though more like ‘animal protein cake’, said Schonwald. All commented that it lacked fat, salt and pepper.

A cooked burger made from Cultured Beef. Credit: David Parry/PA

A cooked burger made from Cultured Beef. Credit: David Parry/PA

You can follow the press conference on Storify, watch a video here and read reports by the BBC, Daily Telegraph, New York Times and Popular Science.

The event heralded  a ‘Brave Moo World’  according to Channel 4.

To create the hamburger, muscle cells taken from the shoulder muscle of a cow and multiplied to form muscle tissue, the main component of beef.

The cells arranged themselves into tiny ‘myotubes’ which are grown around gel hubs, attached to Velcro ‘anchor points’ in a culture dish.  Electrical stimulation was then used to make the muscle strips contract and ‘bulk up’.

With this technique, a single strand can produce over a trillion new strands. And when all these tiny pieces are added together, tissue is the result; it took 20,000 of these small strands of meat to create one normal sized hamburger.

Other ingredients include salt, egg powder, and breadcrumbs. Beetroot juice and saffron were added to provide authentic beef colouring.

One reason Brin is backing this project is that the Food and Agriculture Organization of the United Nations estimates that the demand for meat is going to increase by more than two-thirds in the next four decades and current production methods are not sustainable.

Livestock also contributes to global warming through releases of methane, a greenhouse gas 20 times more potent than carbon dioxide, via belching and farting.

According to Prof Post, research carried out at the University of Oxford suggests that producing cultured, or in vitro, beef could use as much as 99% less space than current livestock farming methods and will have smaller emissions.

Standard Model Stands Firm

Dr. Harry Cliff, a Physicist working on the LHCb experiment and the first Science Museum Fellow of Modern Science, writes about a recent discovery at CERN. A new Collider exhibition opens in November 2013, taking a behind-the-scenes look at the famous particle physics laboratory. 

On Friday afternoon, at the EPS conference in Stockholm, two colleagues of mine from CERN stood up to announce that the search for one of the rarest processes in fundamental physics is over. The result is a stunning success for the Standard Model, our current best theory of particles and forces, and yet another blow for those hoping for signs of new physics from CERN’s Large Hadron Collider (LHC).

The Compact Muon Spectrometer, an experiment at CERN. Image credit: CERN.

The Compact Muon Spectrometer, an experiment at CERN. Image credit: CERN.

The LHCb and CMS experiments at the LHC have made the first definitive observation of a particle called a Bs meson decaying into two muons, confirming a tentative sighting at LHCb (my experiment) last autumn. The discovery has far-reaching implications for the search for new particles and forces of nature.

Beyond the Standard Model

There are a lot of reasons to suspect that the current Standard Model isn’t the end of the story when it comes to the building blocks of our Universe. Despite agreeing with almost every experimental measurement to date, it has several gaping holes. It completely leaves out the force of gravity and has no explanation for the enigmatic dark matter and dark energy that are thought to make up 95% of the Universe. The theory also requires a large amount of “fine-tuning” to match experimental observations, leaving it looking suspiciously like the laws of physics have been tinkered with in a very unnatural way to produce the Universe we live in.

In the last few decades a number of theories have been put forward that attempt to solve some of the Standard Model’s problems. One particularly popular idea is supersymmetry (SUSY for short), which proposes a slew of new fundamental particles, each one a mirror image of the particles of the Standard Model.

The Large Hadron Collider beauty (LHCb) experiment at CERN. Image credit: CERN.

The Large Hadron Collider beauty (LHCb) experiment at CERN. Image credit: CERN.

SUSY has many attractive features: it provides a neat explanation for dark matter and unifies the strengths of the three forces of the Standard Model (this suggests that they could all be aspects of one unified force, which should definitely be referred to as The Force, if it turns out to exist someday). It would also keep my colleagues in work for decades to come, thanks to a whole new load of super-particles (or sparticles) to discover and study.

However, physicists were first attracted to it because the theory is aesthetically pleasing. Unlike the Standard Model, SUSY doesn’t require any awkward fine-tuning to produce laws of physics that match our experience. This is not a very scientific argument, more a desire amongst physicists for theories to be elegant, but historically it has often been the case that the most beautiful theory turns out to be right one.

On the hunt

The decay observed at LHCb and CMS is predicted to be extremely rare in the Standard Model, with a Bs meson only decaying into two muons about 3 times in every billion. However, if ideas like SUSY are correct than the chances of the decay can be significantly boosted.

Finding particle decays this rare makes hunting for a needle in a haystack seem like a doddle. Hundreds of millions of collisions take place every second at the LHC, each one producing hundreds of new particles that leave electrical signals in the giant detectors. Physicists from LHCb and CMS trawled through two years worth of data, searching untold trillions of collisions for signs of two muons coming from a Bs meson. The pressure to be the first to find evidence of this rare process was intense, as Dr. Marc-Olivier Bettler, a colleague of mine from Cambridge and member of the LHCb team told me.

“It is a very strange type of race. To avoid bias, we don’t allow ourselves to look at the data until the last minute. So it’s a bit like running blindfolded – you can’t see the landscape around you or your competitors, even though you know that they’re there, so you have no idea if you are doing well or not! You only find out after you cross the finish line.”

However, ultimately the race ended in a draw. Neither LHCb nor CMS alone had enough data to announce a formal discovery, each turning up just a handful of likely candidates. But when their results are formally combined next week it is expected that the number of observed decays will pass the all-important “five sigma” level, above which a discovery can be declared.

Standard Model Stands Firm

In a blow for supporters of SUSY, LHCb and CMS observed the decay occurring at exactly the rate predicted by the Standard Model – approximately 3 times in a billion. This is yet another triumph for the Standard Model and kills off a number of the most popular SUSY theories.

Professor Val Gibson, leader of the Cambridge particle physics group and member of the LHCb experiment explained that, Measurements of this very rare decay significantly squeeze the places new physics can hide. We are now looking forward to the LHC returning at even higher energy and to an upgrade of the experiment so that we can investigate why new physics is so shy.”

This result is certainly not the end of the road for ideas like supersymmetry, which has many different versions. However, combined with the recent discovery of the Higgs boson (whose mass is larger than predicted by many SUSY theories) this new result may only leave us with versions of SUSY that are somewhat inelegant, meaning that the original motivation – a natural description of nature – is lost.

This new result from CERN is yet another demonstration of the fantastic (and somewhat annoying) accuracy of the Standard Model. Incredible precision is now being achieved by experiments at the LHC, allowing physicists to uncover ever-rarer particles and phenomena. If ideas like supersymmetry are to survive the onslaught of high precision tests made by the LHC experiments, we may have to accept that we live in a spookily fine-tuned Universe.