Category Archives: Science news

View of the LHCb cavern

X-citing news from CERN

Dr. Harry Cliff, a Physicist working on the LHCb experiment and the first Science Museum Fellow of Modern Science, writes about a new discovery at CERN for our blog. A new Science Museum exhibition about the Large Hadron Collider will open in November 2013, showcasing particle detectors and the stories of scientific discoveries.

In 2003 physicists at the Belle experiment in Japan reported they had discovered a brand new particle.

Adding a new entry to the big book of particle physics is certainly satisfying, but not usually cause for much excitement. The discovery of the Higgs-like boson last year was an exception. After all, hundreds of particles have shown up in experiments over the last century. So many in fact, that they were often referred to, rather derisively, as a “zoo”.

The Large Hadron Collider at CERN. Image Credit: CERN

But the particle found at Belle was different.

It didn’t fit neatly into the picture painted by theory and there was no clear explanation for its origin. It was a bit of an enigma, and earned a suitably enigmatic name: the X particle.

Professor Val Gibson from the University of Cambridge told me that she and her colleagues “have been mesmerized” about the identify this mysterious particle for the last ten years.

The Particle Zoo

The vast majority of the particles that make up the particle zoo are not fundamental; in other words they are made up of smaller things and these things are fundamental particles called quarks. Six different types of quark have been discovered and they can form a large number of different combinations, explaining the particle zoo.

However, quarks only bind together in very specific ways. Two ways in fact. One option is a ménage à trois known as a baryon. Baryons include the proton and the neutron, the building blocks of the atomic nucleus. The other option is where a quark and an antiquark couple up to form a meson.

The X didn’t fit easily into either of these pictures. This generated a lot of excitement and there was speculation as to whether it could be an ordinary meson, or some new exotic combination involving four quarks, a tetraquark, or a “molecule” of two mesons stuck together.

If this were true it would be the first time such an exotic state had been definitively seen in nature.

The only way to tell would be to measure the quantum numbers of the X, three properties that give a clue to its internal structure. This hadn’t been possible, until now.

Exciting, Exotic X

Amid the hundreds of trillions of collisions generated by the Large Hadron Collider over the past three years physicists at the LHCb experiment (the experiment I work on) managed to pick out about 300 X particles.

View of the LHCb cavern

View of the LHCb cavern. Image credit: CERN

This week, they presented the first full measurement of the quantum numbers of the X, at a conference at La Thuile in Italy. The result was emphatic – the X is not a meson, it is something altogether more exotic.

LHCb physicist Dr Matt Needham told me that “this measurement is a great step forward in understanding this mysterious X” and a “very exciting result”. However, there is still work to be done.

“The real nature (of the X) is still unclear”. Whether it’s a tetraquark, meson molecule or something else entirely must now be determined.

His colleagues at LHCb will now search for signs of the X decaying in new ways to try to separate out the various different options. Although the Large Hadron Collider has now shut down for two years physicists at LHCb will have no shortage of data to work with. An unprecedented sample was collected during 2012, corresponding to 180 trillion collisions, each one producing hundreds of particles.

The true nature of this enigmatic particle may soon be known. Whatever the result, we have now had our first glimpse of an altogether new state of matter. Finding out exactly what the X is will bring us deeper understanding of nature’s fundamental building blocks and the forces that bind them together.

Visitors to the Science Museum will have a chance to get up close and personal with the LHC at a new exhibition opening in November 2013. The exhibition will showcase real pieces of the LHC, including an intricate particle detector from the heart of the LHCb experiment.

De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) by Copernicus, 1543. Image credit: Science and Society Picture Library

There’s something about February

It is remarkable to think that some of the greatest scientific thinkers who have ever lived, the likes of Darwin, Galileo, Copernicus and Boltzmann, were all born in early February.

Austrian physicist Ludwig Boltzmann, born on 20 February 1844, is remembered for his work in the development of statistical mechanics, used to predict how the properties of atoms can determine the behaviour of matter. Boltzmann’s pioneering scientific contributions to kinetic theory – which described the speed of atoms in a gas – came at a time when many scientists disbelieved an atom’s very existence.

Over half a millennia ago (540 years ago yesterday in fact), Nicolaus Copernicus was born in a small medieval town in Poland. Copernicus would go on to fundamentally challenge our sense of place in the cosmos, publishing his ideas of the heliocentric universe just two months before his death in May 1543. On the Revolutions of the Heavenly Spheres, along with many other objects from the history of astronomy, are on display in our Cosmos and Culture exhibition.

De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) by Copernicus, 1543. Image credit: Science and Society Picture Library

Copernicus’s ideas were supported by Italian astronomer and mathematician Galileo Galilei, born 15 February 1564. After failing to complete his studies in medicine at Pisa, Galileo turned his attention to mathematics. Experiments in 1604 with rolling balls down an inclined plane, led Galileo to deduce the law of falling bodies and show that the speed with which bodies fall is independent of their weight.

Siderius Nuncius (The Starry Messenger) by Galileo. Image credit: Science and Society Picture Library

In 1609, Galileo reinvented the refracting telescope leading to numerous astronomical findings, including the discovery of four moons of Jupiter, which he published in Siderius Nuncius (The Starry Messenger) – on display in our Cosmos and Culture exhibition. Galileo’s support for Copernicus’s view of a sun-centred solar system brought him into direct opposition with the church and led in 1633 to his imprisonment under house arrest.

Also born in early February were two Naturalists, Charles Darwin (born 12 Feb 1809) and Sir Joseph Banks (13 Feb 1742), who travelled the world – with Banks joining Captain Cook’s voyage to the South Pacific on board HMS Endeavour and Darwin sailing on HMS Beagle – identifying new species (1300 in in the case of Joseph Banks) and exploring geological features and plant and animal life across the globe.

Sir Joseph Banks, British explorer and naturalist. Image credit: Science and Society Picture Library

Outside of his travels to far-off lands, including Newfoundland, Tahiti and New Zealand, Banks was known for his promotion of science. On his return to Britain, Banks wrote detailed descriptions of the people and places he had encountered, and later become honorary director of the Royal Botanic Gardens, Kew and a Trustee of the British Museum, before being elected President of the Royal Society in 1778.

Charles Darwin joined a five-year scientific expedition on HMS Beagle, studying a vast array of plants, animals and geological wonders. On his return in 1836, he began to think in earnest about the mechanisms that had generated such variety in nature.

Charles Darwin, English naturalist, c 1870s. Image Credit: Science & Society Picture Library

Influenced by the thinking of Thomas Malthus, Darwin developed his theory of evolution through natural selection over the next two decades, only publishing his work after learning that another naturalist, Alfred Russel Wallace, had developed similar ideas. On the Origin of Species by Means of Natural Selection went on to transform the way the natural world was understood across the world.

Portrait of a woman looking thoughtful, c 1950.

What *should* we be worried about?

By Pippa Murray and Will Stanley

Ask most people what is worrying them and their answer is often personal. Ask leading thinkers and you could end up worried yourself.  The latter was put to the biggest science minds for this year’s annual question – What should we be worried about? – from the good people at Edge.

Each year, this online literary salon poses a new question – previous examples include ‘What is your favourite deep, elegant, or beautiful explanation?’ and ‘What will change everything?’ – and requests that each contributor responds with a scientifically informed argument. The aim is to step away from the pressing news of the day, and share something new and thought provoking.

Portrait of a woman looking thoughtful, c 1950.

Portrait of a woman looking thoughtful, c 1950
Credit © Photography Advertising Archive/National Media Museum / Science & Society Picture Library

With this in mind it seems right to start with Larry Sanger’s essay, the co-founder of Wikipedia and Citizendium, which looks at the rise of internet silos. In Sager’s opinion, these online websites for news or opinion breed hostility and single mindedness by hosting ‘objectively unsupportable views that stroke the egos of their members,’ that make us ‘overconfident and uncritical’ about the world around us.

Continuing on the theme of modern technologies, Nicholas HumphreyEmeritus School Professor at the London School of Economics, raises his concerns on fast knowledge. While many view today’s easy access to smartphones, search engines and the information that they provide us at the click of a button as a good thing, Humphrey argues the opposite. He states that nowadays, ‘everyone finds themselves going to the same places, when it’s the arrival and not the journey that matters, when nothing whatever memorable happens along on the way, I worry that we end up, despite our extraordinary range of experience, with less to say.’

In contrast to Sanger and Humphrey, Simon Baron-Cohen dissects an age old debate, that of C.P. Snow’s ‘Two Cultures’ from 1969. In his essay, Baron-Cohen recognizes the efforts of literary agents and publishers to make science more accessible, particularly to non-scientists, but states that in other fields of science, such as sex differences in the brain, these two cultures remain separated by a deep chasm.

Among these 140 contributors is one from our own Director of External Affairs, Roger Highfield, who argues the need for more science heroes to step forward, stating that ‘When it comes to selling the magic of science we need to accept that the most powerful way is through heroic stories.’ Highfield worries about the decline of scientific heroes, because their function as ‘viral transmitters of science in the crowded realm of ideas’ is of vital importance. He concludes that scientific literacy is vital for a modern democracy to function.

Other contributors, such as Steven Pinker, take an alternative approach, eliminating some of the problems that people fixate on. In Pinker’s case he looks at the causes of war, suggesting new and more relevant approaches to these worries. Kevin Kelly chose to turn the focus of a well known topic on its head, sharing the lesser-known worry of under-population.

And while reading all these essays may lead you to worry about many more things than you usually do, a common theme of these essays is the importance of sharing knowledge and challenging the status quo in today’s society, which is not such a bad idea after all.

Read more of what you should be worying about here

One of 12 cognitive tests which look at memory, reasoning, attention and planning abilities

Biggest intelligence test exposes the limits of IQ

By Adam Hampshire, Brain and Mind Institute, University of Western Ontario

To what extent are some people smarter than others? For a century, psychologists have believed that we can boil differences in cognitive skill down to a single number known as an Intelligence Quotient (IQ). But does one number really represent an individual’s ability to remember, to reason and to think? The answer is an emphatic no, according to the results of a landmark experiment conducted on many tens of thousands of people with the help of Roger Highfield of the Science Museum Group.

[yframe url='http://www.youtube.com/watch?v=vPVxAxzhvDA']

With Roger and my colleague Adrian Owen, who works with me at the University of Western Ontario, I describe our findings today in the journal Neuron.

Our  attempt to answer this simple question dates back more than five years, when Roger encountered work that I had conducted with Adrian at the Medical Research Council in Cambridge on a reliable way to carry out cognitive tests online so we could monitor rehabilitation after brain injury, the effect of smart drug trials and so on.

Roger wondered if we could use this test to carry out a mass intelligence test. Drawing on earlier data from brain scans,  Adrian and I came up with a series of tests which we knew would trigger activity in as much of the brain’s anatomy as possible, combining the fewest tasks to cover the broadest range of cognitive skills.

In half an hour, respondents had to complete 12 cognitive tests which look at memory, reasoning, attention and planning abilities, as well as a fill in a survey about their background and lifestyle habits (Roger and Adrian describe the tests here).

One of 12 cognitive tests which look at memory, reasoning, attention and planning abilities

We expected a few hundred responses. But thanks to articles in The Daily Telegraph, Discovery and New Scientist, 110,000 people took part from every corner of the world. Once I had used statistical methods to analyse more than a million data points on a representative group of around 45,000, I found that when a wide range of cognitive abilities are probed, the variations in performance can only be explained with at least three distinct components: short-term memory; reasoning; and finally, a verbal component.

No one component, or ‘IQ’, explained all the variations revealed by the tests.

To bolster our results, Adrian and I used a $5 million brain scanner, which relies on a technique known as functional magnetic resonance imaging (fMRI), to study 16 participants as they carried out all 12 tests.  We found that each of the three different factors identified by the analysis did indeed correspond to a different brain network: these differences in cognitive ability map onto three distinct circuits in the brain.

The results disprove once and for all the idea that a single measure of intelligence, such as ‘IQ’, is enough to capture all of the differences in cognitive ability that we see between people. Instead, several different brain circuits contribute to intelligence, each with its own unique capacity. A person may well be good in one of these areas, but they are just as likely to be bad in the other two.

Because so many people took part, the results also provided a wealth of information about how factors such as age, gender and the tendency to play computer games influence our brain function.

[yframe url='http://www.youtube.com/watch?v=KBG6LCqj5JY']

For example, people who regularly played computer games did perform significantly better in terms of both reasoning and short-term memory. Smokers performed poorly on the short-term memory and the verbal factors, while people who frequently suffer from anxiety performed badly on the short-term memory factor in particular.

We are now launching a new version of the tests here. To ensure we do not bias the results of the new tests, we can’t say much about the agenda other than that there are many more fascinating questions about the true nature of intelligence that we want to answer.

Adam Hampshire works at the Brain and Mind Institute, University of Western Ontario, London, Ontario.

Jennifer photographed with the new trophy for the Queen Elizabeth prize for engineering.

Queen Elizabeth Trophy Competition Winner Announced

This tree-like structure that symbolises the growth of engineering has been chosen as the trophy for a new global prize. The Queen Elizabeth Prize is considered to be the Nobel prize for engineering and yesterday the winner of the trophy competition was announced by Ian Blatchford, Director of the Science Museum Group.

Jennifer photographed with the new trophy for the Queen Elizabeth prize for engineering.

The prestigious award was given to Jennifer Leggett, an A Level student from Sevenoaks in Kent, who was the brains behind the winning design. Jennifer fought off tough competition from a shortlist of ten young designers, aged between 16 and 22, to win the prize and will have the unique opportunity to see her trophy presented to the winner of the Queen Elizabeth Prize at the inaugural ceremony in March 2013. Following the announcement the delighted Jennifer thanked the judges and congratulated her fellow competitors commenting on the quality and range of all the designs in the room.

3 of the 5 judges photographed with Jennifer Leggett and her trophy. From left: Ian Blatchford, Director of the Science Museum Group; Yewande Akinola, Engineer; Jennifer Leggett; Nick Serota, Director of the Tate.

The panel, who had the tough job of selecting the trophy, consisted of: Science Museum Director and Chair of judges, Ian Blatchford; architect Dame Zaha Hadid; Director of the Tate, Sir Nicholas Serota; Design Museum Director, Deyan Sudjic; and Engineer, Yewande Akinola. During the judging competitors were asked to explain the inspiration behind their design and what material would best fit their trophy but, on announcing the winner, Ian admitted that the judges had to add two additional criteria to help them whittle it down and come to a decision – whether the Queen would take pleasure from handing the prize and how the winner of the QE prize might feel when collecting their award. The winning trophy was described as “jewel-like” and was praised for its strong design which reflected the creativity, power and importance of engineering in the world today.

Reflecting on the competition Ian Blatchford said, “We set a challenge for young people to come up with an iconic trophy design that best embodies the wonder of modern engineering and reflects the merging worlds of science, art, design and engineering. Jennifer has shown real imagination and talent – all the judges were enormously impressed with her design.”

At the awards ceremony at the Science Museum’s Smith Centre, all ten of the shortlisted designers saw their trophy brought to life having had their design transformed into 3D printed prototypes by BAE Systems using the latest in Additive Layer Manufacturing technology. These replicas illustrated the intricate designs of each of the trophies which varied from Alexander Goff’s ‘Flowers and Thorns’ a towering structure of petals and sharp thorns, to Gemma Pollock’s ‘Bright Perceptions’ that centred around a double helix, and Dominic Jacklin’s ‘The Nest’ a vortex of geometric shapes which was concieved to represent the ubiquity of engineering in our lives.

The QE prize is a new £1 million global engineering prize, launched in 2012 which rewards and celebrates an individual (or up to three people) responsible for a ground-breaking innovation in engineering that has been of global benefit to humanity. The first winner of the QE prize will be announced in March 2013 and will be presented with Jennifer’s trophy by the Queen in a ceremony at Buckingham Palace.

Motorola 8800X

SMS turns 20 with a touch of festive cheer

By Charlotte Connelly, Content Developer – Making Modern Communications

Every time we invent a new communications device, somebody has to decide what the first every message will be. Sometimes this is planned in advance and has a weighty meaning. For example, when the first American telegraph line was officially opened in 1844, the first message sent by Samuel Morse asked: What hath God wrought?

On other occasions, the inventors of the technology were taken by surprise, such as Alexander Graham Bell. His first words were less majestic: Mr Watson, come here, I want to see you.

So, 20 years ago today, when 22-year-old British engineer, Neil Papworth, was trying out Vodafone’s new SMS system out for the first time, what did he send? Well, as it was nearing Christmas, there was really only one choice: MERRY CHRISTMAS

Motorola 8800X

This phone, the Motorola 8800X, was launched in 1992. The same year that the first SMS message was sent. Source: Science Museum

The first commercial SMS (short message service) system went into operation in 1993, after several years of tinkering with various text based messaging services. Mobile phone companies didn’t rush to get text messaging out there because they didn’t think anybody would be interested in sending such short messages.

In a way they were proved right, because it wasn’t until the late 1990′s when the first pre-pay phones came into use that texting really took off. Lots of users found texting to be a cheap way of sending a snippet of information, and by 2002 we were sending 2 million texts an hour in the UK alone.

Nokia 3310

You might recognise the Nokia 3310, it was launched in 2000 at around the time that sending text messages was really getting big. Source: Science Museum / Science and Society

The number of texts being sent around the world is still growing, but as our phones become the centre of our communications world, with social networks and email as well as texting and calling, the humble text message is going to have to work hard to stay in use.

Lord Heseltine answers questions from the audience. Image credit: John Russell

Lord Heseltine on Science and Industrial Strategy

Boffins, crazy ideas and blue sky research might not sound like the building blocks of an industrial policy. However, one of the most seasoned figures in modern politics argued this week that science is not just a cultural activity but plays a central role in driving the nation’s economy. Lord Heseltine, the former deputy Prime Minister, delivered this message to a 300-strong audience attending the Campaign for Science and Engineering (CaSE) Annual Lecture.

Speaking in the Science Museum’s IMAX theatre, Lord Heseltine, who described the Museum as “very impressive”, called for science to help drive economic growth in the UK (the full speech can be read here) as well as discussing research, industrial strategy and the ability of technology to inspiring young people.

Lord Heseltine gives the Campaign for Science and Engineering (CaSE) Annual Lecture. Image credit: John Russell

Drawing on the development of IMAX technology, which has seen decades of advances in technology to improve the public’s cinematic experience, Lord Heseltine noted that if just one student went “to school tomorrow with a renewed enthusiasm for their science lessons, then the pioneers of IMAX technology would surely have done a worthwhile job.”

Lord Heseltine last delivered the CaSE Annual Lecture in 1989, when the organisation was called Save British Science, just a fortnight after the fall of the Berlin Wall. That event, and the political harmony that followed, drove economic collaboration across Europe, helping create today’s global economy.

How to keep up with other nations in the global economy is central to Lord Heseltine’s recently published report: No stone unturned in pursuit of growth. Lord Heseltine called for the government to “place educational improvement, the raising of basic standards and the complete intolerance of sink schools” at the heart of the growth agenda – a key theme of his report.

In his speech, Lord Heseltine was optimistic about the future of science education, noting that “science has never been so accessible or exciting,” and encouraging members of the audience to visit schools and meet students, “Every child remembers the brilliant adult who sparked a flame of ambition in their head, who changed the course of their life forever.”

Inspiring the next generation of scientists and engineer’s is a vital part of the Museum’s mission. Engaging with 400,000 school children a year, the Museum’s Learning team work with thousands of science teachers across the country to help them develop innovative tools and techniques to deliver outstanding science lessons.

Lord Heseltine answers questions from the audience. Image credit: John Russell

The speech concluded with a look at industrial strategy, “It is about government working hand-in-hand with business to help our industrial base get ahead,” before a Q&A discussion with audience members. The Q&A touched on the benefits of blue skies research; with Lord Heseltine commenting that research must not only be done for its own sake, but also for the pursuit of growth.

Lord Heseltine’s comments here at the Museum come in the wake of a recent speech at the Royal Society by the Chancellor, who emphasised the central role of science in driving a modern, dynamic economy.

James Gleick

The Information wins science book prize

By Roger Highfield, Director of External Affairs at the Science Museum Group.

The bestselling author, James Gleick, has won the world’s most prestigious science book prize with his revelatory chronicle of how information has become the defining quality of the modern age.

Gleick’s The Information: A History, a Theory, a Flood (Fouth Estate) was announced as the winner of the £10,000 2012 Royal Society Winton Prize for Science Books at the Royal Society in London.

James Gleick

The bestselling author James Gleick was announced as the winner of the £10,000 2012 Royal Society Winton Prize for Science Books at the Royal Society, London

Gleick, who spent seven years working on the book, said he was surprised, and startled in an event at the society chaired by the comedian, actor and popular science writer, Ben Miller, and broadcast by Tom Clarke of Channel 4 news.

After thanking his agent, editor and wife, the New York born journalist remarked on how, unlike researchers who write popular science books, he felt like he was an outsider with his ‘face pressed against the glass.’

The veteran American writer made a huge debut with his first book, Chaos (1987), an international bestseller which provided insights into the apparent disorder in complex systems and made everyone aware of the extraordinary influence of the ‘butterfly effect.’ Since then he has written Pulitzer-Prize shortlisted biographies of two heroes of science, Richard Feynman and Isaac Newton.

Gleick’s latest work tells the story of information, from the theory of information proposed by American Claude Shannon to the current revolution in biological information, replicated and transmitted in the form of DNA since the origin of life, and the tsumani of data that now engulf us to become the very quintessence of 21st century society.

Along the way the reader encounters many figures that are also celebrated in the Science Museum, such as Charles Babbage, inventor of the first great mechanical computer; Ada Lovelace, the dazzling daughter of the poet Byron, who became the first true programmer, and Alan Turing, who lay the foundations of modern computing and cracked both the codes of nature and the Nazi war machine.

The stories behind the revolutions that created today’s information age will also form the core of a forthcoming multi-million pound gallery, Making Modern Communications, scheduled to open in the museum in 2014.

The judges on this year’s judging panel included the authors Jasper Fforde and Tania Hershman, BBC Commissioning Editor for Science Kim Shillinglaw and Royal Society University Research Fellow Samuel Turvey. The panel was chaired by Professor Jocelyn Bell Burnell, who said the decision was difficult, though unanimous. “The Information “an ambitious and insightful book that takes us, with verve and fizz, on a journey from African drums to computers. It is one of those very rare books that provide a completely new framework for understanding the world around us.”

The prize, award by Society president Sir Paul Nurse, saw off strong competition from a heavyweight shortlist:

• Moonwalking with Einstein by Joshua Foer, published by Allen Lane (Penguin Books), on his quest to understand human memory.

• My Beautiful Genome by Lone Frank, published by Oneworld, a personal perspective on personal genetics

• The Hidden Reality by Brian Greene, published by Allen Lane (Penguin Books), which explores parallel universes and the laws of the cosmos.

• The Better Angels of Our Nature by Steven Pinker, published by Allen Lane (Penguin Books), which reveals how, contrary to popular belief, humankind has become progressively less violent over the millennia.

• The Viral Storm by Nathan Wolfe, published by Allen Lane (Penguin Books), which examines the world of viruses and why modern life has made our species vulnerable to the threat of a global pandemic and how to remain ahead of the threat.

Sir Paul remarked that there had been a renaissance of science writing and admitted it was a ‘pity that someone had to win.’ Despite the lack of British writers on the shortlist, many were present in the audience, including Armand Leroi, Tim Radford, Jo Marchant, Martin Rees, Stuart Clark, Helena Cronin, Philip Ball, Graham Farmelo, Alex Bellos and Jim Al-Khalili.

Set up in 1988 as the “Science Book Prizes”, it became the Rhône-Poulenc Prizes for Science Books from 1990 – 2000, then became the Aventis Prizes for Science Books from 2001 – 2006 and the Royal Society Prize for Science Books from 2007 – 2010. Now in its 25th year, the book prize is now sponsored by the global investment management company Winton Capital Management. David Harding, Founder and Chairman , congratulated James Gleick as ‘ a worthy winner in a strong field’ and thanked the shortlisted authors for helping to turn the sea of scientific information into knowledge.

Roger Highfield is an author, editor of book shortlisted for the prize in 2008 (A Life Decoded by Craig Venter) and Director of External Affairs of the Science Museum Group.

John Liffen, Curator of Communication at the Science Museum inspects the Brother CM-1000

Oh Brother where art thou…

By Rachel Boon, Assistant Curator of Technologies and Engineering

Clack clack clack clack… ping! The sound of a typewriter sweeping across the page, already becoming a faint memory, will soon fall silent as the mass manufacturing of this technology ends in the UK. Typewriters are iconic machines and have served as the tool of communication over the last 130 years. Whether it’s the legacy of the Beat generation of authors; William Burroughs or Jack Kerouac capturing post-war America on the page, or images of secretaries fiercely typing away, the typewriter has been indoctrinated into our historical and cultural heritage.

Marking the end of UK typewriter production

The place which marked the end of UK typewriter production was Ruabon, at the Brother Factory set within the beautiful Welsh countryside. The factory’s 200 employees witnessed the final model of the Brother CM-1000 being packed into its box to a soundtrack of emotional sighs and cheers. This object is the 5,855,533rd of its type to be produced but the only one which has a place in the Science Museum collection. Brother have kindly donated this last British made typewriter to the Museum, which will be an invaluable addition to the 200 typewriters already in our collection.

John Liffen, Curator of Communication at the Science Museum inspects the Brother CM-1000 (l) and Wheatstone telegraph printer (r), which share a similar printing mechanism

Interestingly, the CM1000 (above left) shares a similar mechanism with another object in our collection, one of the earliest telegraph printers built by Sir Charles Wheatstone in the mid 19th century (above right). This latest addition to the collection will enable us to tell the story of how technology has evolved and been shaped by our communication needs.

A Higgs boson is produced in the ATLAS detector

The boring boson?

Last week scientists working on the Large Hadron Collider in Geneva updated their colleagues on the newly-discovered Higgs boson. They revealed what they now know about the particle – and so far, it is behaving exactly as they expected. While this might seem like good news, for some people it is the opposite, because a well-behaved Higgs might rule out some intriguing new physics theories.

A Higgs boson is produced in the ATLAS detector

A Higgs boson is produced in the ATLAS detector

The Higgs – the particle which explains why others have mass – is incredibly unstable and only exists for a fraction of a second before decaying into other, more common particles. Any information about it comes second-hand from these other particles, and working out the properties is rather like putting together clues in a Sherlock Holmes tale, only with more mathematics.

Finding the Higgs in July was a wonderful coup for the LHC, but there now follows years of painstaking work to determine its precise properties. If the Higgs behaves even a smidgen differently from predictions, then it might point scientists in the direction of a new theory.

One particularly popular idea has the rather grand name of “supersymmetry”, which as we wrote on this blog last week, is looking less likely to be true.

There are lots of problems with current theories about the Universe – they don’t explain dark matter, and particle physics is completely incompatible with Einstein’s theories of gravity. Supersymmetry solves some of these issues in a whizz of complicated mathematics, but requires the existence of a whole family of new particles. If they exist, the Higgs’ properties should reveal them.

The results announced on Wednseday in Japan don’t lend the under-fire supersymmetry any more support. They suggest that so far, the Higgs behaves just as our current theory predicts it should. Specifically, when it decays, it turns into different types of particles at the rates we expect.

To some in the community, the Higgs’ conformity is rather disappointing.  But not all of the analysis was ready for the Japan conference and there is still uncertainty around the results that were announced, and supersymmetry still could work.

Even though the LHC has already analysed more data in two years than its predecessor managed in twenty, the measurements are not yet particularly precise, and the Higgs may still harbour surprises. The LHC still has not detected a Higgs decaying into quarks (the smallest unit of matter), for example – we just know that since we haven’t seen it yet, it can’t happen often. In other words: watch this space.

Visitors to the Science Museum will have a chance to get up close and personal with the LHC at a new exhibition opening in November 2013.