Category Archives: Teaching resources

Wonderful Things: Peruvian Rubber Ball

Shaun Aitcheson from our Learning Support Team writes about one of his favourite Science Museum objects.

What do you think this is?

What is this?

Credit: Science Museum/SSPL

Whilst this may look like a rock or a big ball of old chewing gum, it’s actually a rubber ball. It was found in the grave of a Peruvian child, and is thought to date from 1590-1610. Rubber balls were invented by the Ancient Mesoamericans who used them in what was probably the first ever ball sport, a game similar to racquetball called the Mesoamerican Ballgame. This game was invented around 1600 BC, but could be even older. In some places, instead of a rubber ball, they would use a human head!

Image Credit: Marjorie Barrick Museum http://barrickmuseum.unlv.edu/families/img/Maya14-small.jpg

Today we think of rubber balls as toys, but this one was most likely used as a funeral offering as a symbolic gesture towards the afterlife or perhaps even evidence of a human sacrifice to the gods.

Although this ball is only around 400 years old, it highlights just how long rubber has been used by humans. Incredibly, humans have been creating rubber for over 3500 years.

The first use of rubber was by the Olmec people (Rubber People) of South America. They would boil natural latex, a milky sap-like substance, which they ‘tapped’ from the rubber tree Hevea Brasiliensis, and mixed with the juice of a ‘morning glory’ vine. This created a very stretchy and extremely waterproof material. The Olmec’s used it to create items such as rubber balls, galoshes and waterproof cloaks.

Rubber wasn’t used greatly in the West until 1770 when an Englishman called Joseph Priestly, noticed that the material was very good at rubbing away pencil marks, hence the name ‘rubber’. Charles Mackintosh began using rubber to create his famous waterproof jackets in 1824. However, they were far from perfect as they melted in hot weather and smelled very bad!

Charles Goodyear and Thomas Hancock are responsible for producing the rubber we know today. In the 1840s they heated it in combination with sulphur to produce vulcanised rubber, strengthening it greatly. Thanks to the invention of the bicycle and motor car, rubber consumption soared as it was the perfect material for tyres, with its very durable and shock absorbent qualities.

The rubber ball can be found in Challenge of Materials, on the first floor of the Science Museum.

Your guide to becoming a Bubble-ologist

The Science Museum’s outreach team share some of their tips on creating the best bubbles.

Here in the outreach team it’s our job to travel the country (and sometimes the world) bringing exciting science shows and workshops into classrooms, school halls, fields and town centres.

We are often asked about what our favourite shows are, and everyone in the team has their own particular choice. But, our most popular show by far is most certainly The Bubble Show, last year we performed 149 of them!ronan bubble

So with that in mind we thought we’d share a few of our bubble secrets. Why not try them out this half term?

To make your bubble mix you will need:

D090445

Mostly warm water with a splash of washing-up liquid and some glycerol

We add glycerol (sometimes sold as glycerine) to our mix because it slows down the evaporation of the water. This means the bubbles can last longer and the bubble mix is great for making really big bubbles too. Remember, most of the mix is water, with only a small amount of washing-up liquid and glycerol – experiment with different proportions and see how your bubbles change.

You can buy glycerol from a high- street chemist but if you can’t get hold of any, sugar does the job as well. Just dissolve it in some warm water and add a little to your bubble mix. Sugar will make your bubbles sticky though!

Once you have your lovely bucket of bubble mix you can start to make bubbles using all sorts of things, here are a few ideas..

Why not make your own bubble trumpet?

D090453D090464

Or how about a giant bubble wand using a coat hanger? D090473 D090482

Have a look around the house and see what else you could use to make bubbles. Old tennis racquets are great for making lots of little bubbles all at once, even straws or plastic cups with the bottom cut off are great for blowing bubbles.

Check out this printable guide for making even more bubble-blowing devices, or come and catch a free Bubble Show at the Science Museum!

Did you know…

Bubbles are very colourful, but just before they pop they can appear to turn black. Bubbles will always try to form a sphere shape, this shape requires the least amount of energy as it reduces the surface area.

The world record for the largest free floating bubble was set by Jarom Watts in 2009, his bubble was 13.67m3.

Mission to Mars

Tanya, our Learning Resources Project Developer, blogs on potential missions to Mars and discussing them in the classroom. For more on our Talk Science teachers’ courses, click here.

We are in an interesting period of space travel; news from the past year has been filled with findings from the Curiosity rover and stories of possible manned missions to Mars. For me the release of Mars Explorer Barbie confirmed ‘Mars Mania’ is upon us. There are big questions surrounding the ethics and feasibility of sending humans to Mars, however proposals keep emerging which hope to do so, many of which are private enterprises.

One interesting example is the Inspiration Mars Foundation, which in 2018 plans to perform a Mars flyby, over a period of 501 days, with a married couple as its crew. Another, Mars One, seems to have really captured the public’s imagination.

It may sound like science fiction, but Mars One hopes to establish a colony on Mars by 2023. The plan is to use existing technologies, such as solar power and water recycling, to create a permanent habitat for the astronauts. Over the next ten years they will send rovers, satellites, living units, life support systems and supply units to Mars ready for the arrival of the first settlers in 2023.

Three generations of Mars rovers

Three generations of Mars rovers, including Curiousity far right. Image Credit: NASA/JPL-Caltech

Applications for the first round of astronauts closed recently; over 200,000 people, from more than 140 countries applied. Six teams of four will be selected for training, with further opportunities opening every year. The crew will learn medical procedures, how to grow food on Mars, and how to maintain the habitat and rovers. In 2024 a second crew will depart Earth, with four new settlers arriving every two years until 2033, when 20 people should be living on Mars.

This incredibly challenging mission is estimated to cost $6 billion. Interestingly part of the funding will come from a reality TV show which will follow the teams from their recruitment through to their first few years living on Mars. In addition to high costs the team will face Mars’ fiercely hostile environment; high levels of radiation, low gravity, little atmosphere, high impact from the solar winds, and water sources frozen underground. If successful the astronauts will make history, but it won’t be easy and they will never breathe fresh air again.

Picture of mars, taken by the Spirit rover.  Image credit: NASA/JPL/Cornell

Picture of mars, taken by the Spirit rover. Image credit: NASA/JPL/Cornell

The mission throws up many interesting questions from both a personal and technological perspective. Maybe try hosting your own debate on the subject, or if you’re a teacher, you could try raising the issues with your students using one of our discussion formats.

Should we send humans to Mars?
How would you feel if a loved one volunteered for a one-way mission to mars?
Do you think that current technologies could sustain life on Mars?

If you want to build your skills for using discussion in the classroom further, we are running the Talk Science teachers’ course in London on 29th November. For details of how to sign up click here.

Wonderful Things: Amana Radarange Touchmatic microwave oven

Rosanna Denyer, from our Learning Support Team, writes about an often overlooked object from the museum collection. 

The food we eat has changed over time, and with the development of new technologies so has the way we cook and prepare our meals. Microwave ovens, like this Amana Radarange Touchmatic from 1978, have contributed to changes in both our diet and lifestyle.

Amana Radarange Touchmatic microwave oven

Amana Radarange Touchmatic microwave oven, 1978

The microwave oven was invented in 1945 by an engineer called Percy Spencer. He was researching military uses for radar technology and an accidental side effect of this was the invention of the microwave oven. After standing in front of a magnetron, Spencer noticed that the chocolate bar in his pocket had melted. To test this further he then held a bag of corn kernels near the magnetron and watched as they exploded into popcorn.

Spencer found that microwaves, such as those emitted from his radar equipment, caused the water molecules in food to vibrate and heat up, which caused the food to cook. Recognising the potential of this, Spencer used the magnetron to create the first microwave ovens, which arrived in Britain in 1959.

After many years of using traditional ovens, the microwave oven was a startling change. Previously cooking had been a slow process, but now whole meals could be prepared in just a few minutes.

Some argue that the invention of the microwave brought about ‘the rise of the ready meal’. The first ‘TV Dinner’ was produced in 1954 and 10 million were sold in the first year alone. Since then, the popularity of ‘convenience food’ has grown and grown and the chilled ready meal market in the UK is now worth over £2.6 billion each year. Busy lifestyles, long working hours and an increased number of women in work are all seen as factors contributing to the popularity of microwaveable food.

But what does this mean for our health? Studies in 2012 suggested that less than 1% of supermarket ready meals complied with the World Health Organisation’s nutritional guidelines and some studies have shown that microwaving food can significantly reduce the nutrients contained within.

Despite this, the popularity of the microwave oven does not seem to be decreasing, and until a faster and more convenient way of cooking is invented, the microwave is likely to remain an essential piece of equipment in many kitchens. 

What labour-saving device would you invent? 

The Amana Radarange Touchmatic microwave oven can be found in The Secret Life of the Home gallery in the Basement of the museum.

Wonderful Things: Frost Ornithopter

Becky Honeycombe from our Learning Support Team writes about one of her favourite objects in the Museum. 

Have you ever dreamed of being able to fly like a bird?  Well if you have, you’re certainly not alone.  The ability to fly has been a human obsession for thousands of years.  One of the earliest references to bird-like flight is found in the Ancient Greek myth of Daedalus and Icarus who attached feathers to their arms to escape captivity.  However, the story ends in tragedy for Icarus as after a brief flight he crashes to the ground.  Sadly, this has been the fate for many humans who have tried to imitate the story and reach the skies, either by attaching wings to their bodies or by making flying machines that mimic a bird’s flight.

Frost's experimental ornithopter, c 1900. Credit: Science Museum/SSPL

Frost’s experimental ornithopter, c 1900.
Credit: Science Museum/SSPL

These machines are known as ornithopters and they come in a wide variety of shapes and sizes. Some of the earliest designs were drawn by Leonardo da Vinci in the 15th Century, but perhaps one of the strangest can be seen in our Flight gallery. The Frost ornithopter, created in 1904 by Edward Purkis Frost, was designed to replicate the wings of a crow. He used both real and imitated feathers combined with an internal combustion engine in an attempt to get his machine off the ground. Frost avidly studied flight and designed a number of contraptions between 1868 and his death in 1922. Despite his best flight being only a ‘jump’ off the ground and his witnessing the development of the conventional aeroplane, Frost remained convinced he had pursued a worthy cause. When asked about his studies towards the end of his life he stated ‘I do not begrudge the time and trouble I expended upon the attempt. The investigations opened my eyes to the wonders of nature. It is a beautiful study’.

University of Toronto's human-powered plane

University of Toronto’s human-powered plane. Photo courtesy of Todd Reichert, University of Toronto Institute for Aerospace Studies

Incredibly, despite the prominence and success of conventional fixed wing aircraft, contemporary scientists continue to be as fascinated as Frost with constructing the perfect ornithopter. In 2010 the University of Toronto successfully achieved the first level sustained flight by a human-powered ornithopter flying 475 ft over 19.3 seconds.

However, despite this success it may not be propelling man into the sky which eventually proves to be the best use for the ornithopter. Recent research has tended to focus on other uses of the technology such as conservation and surveillance. Researchers at the University of Illinois recently developed an ornithopter perfect for urban surveillance. Its ability to mimic the way a bird hovers and lands in confined spaces could make it ideally suited to cramped city conditions.

The history of ornithopters is long and varied, and research into their development and uses looks set to continue for a long time to come.

What other benefits might there be to using ornithopters?

Wonderful Things: The Drug Castle

Kate Davis, a Learning Resources Project Developer, discovers the story behind one of our more unusual objects.

The fifth floor of the Science Museum is a fascinating area, full of gory and often unusual paraphernalia related to the history of medicine. One of the more unusual objects lurking in this gallery is the Drug Castle.

How long did this take to build?

A castle constructed from pills, capsules and medicine containers.

Our knowledge of medicine and how civilisations have treated illness and disease stretches all the way back to the earliest writings on the subject from Ancient Egypt. However, the ways in which people have treated illness has not changed very much over the centuries. It is only during the last 200 years that scientific developments have gathered pace and enabled doctors to make huge breakthroughs in treatments. It is often easy for us, living in the 21st Century, to forget that as little as 100 years ago there was no penicillin, nobody knew the cause of rickets and there was no vaccine for tuberculosis. 

Now, we can mass produce a whole range of pills and potions for a variety of different ailments that had previously been untreatable. All of the syringes, pill bottles and tablets used to create the Drug Castle are real and it is a brilliant visualisation of how central the use of drugs has become to the treatment of illness in the developed world. However, this shift in how we treat disease does not come without its controversy.

The Drug Castle itself is a reminder of this as it was created to feature in a poster campaign by the East London Health Project in 1978. This campaign aimed to raise questions about whether pharmaceutical companies were more interested in making money or making their medicines available to all. Health care is extremely costly and is frequently an issue that is considered and debated by governments worldwide as they try to provide the best health care they can for their citizens with the funds that they have available to them.

There are also significant issues with the effectiveness of the drugs that are prescribed by doctors.  One of the primary examples of this is with antibiotics, that when first manufactured, were very effective at treating infections, but now are less so because the bacteria has mutated so that antibiotics, such as penicillin, are not as useful. Therefore, in order to keep treating infection scientists will need to develop new drugs that can combat these more virulent illnesses.

Should we keep creating new drugs for antibiotic resistant bugs – or do we need to change the way we take medicines?

Science of the sprint

Whether you loved or hated it, sport has been on everyone’s minds over the past few weeks.

How did the athletes do it- what’s the science at work behind their incredible feats? Genetics certainly comes into play, but many other factors influence an athlete’s performance, from footwear, to diet and sleep.

So let’s give a little love to the worlds fastest man, Usain Bolt!

There are plenty of videos online about the secret of his sprint- here’s a good one. In brief, it comes down to his stride (longer than the other athletes’ – genetically gifted I guess) and his strength (near-superhuman, probably- but he had to train for that one).

Where does footwear come in? Well, we recently had a team of scientists down from Loughborough University running (no pun intended) a live event in the Antenna gallery- they work on biomechanics and high performance footwear- and it is really quite incredible how much engineering actually goes into a pair of running shoes!

So that’s it guys- get yourself some amazing high-performance trainers, and see you on the starting block in 2016! ;)

 

Sceptics, change your tune

No, this isn’t about the Olympics… I’m sure you’ve all heard so much about Olympic fever (you may even be deep in the grips of it), so we’re going to give you a break from it for a minute.

This is about climate change (and we’ve heard so much about that too!). That the climate has been changing is almost universally accepted inside and outside scientific circles- but that the fluctuation is actually due to human activity has been a matter of debate for some scientists.  Now a groundbreaking study has given powerful indications that the 1.5C rise in temperature over the past 250 years is due to our busy work on the planet- and has even turned some sceptics!

So what is different about this study compared to all the others? First of all, it analysed data as far back as 1753 (previous datasets only collected from mid-1800s), and instead of having a human organize the data, it was done entirely by a computer (eliminating the criticism that scientists would apply their own bias to the data). The research plotted the upward temperature curve against suspected ‘forcings’ to analyse their warming impact- for example solar activity, or volcanoes. It turned out the best match was for atmospheric carbon dioxide levels- which as we all know have been on the rise, linked to our use of fossil fuels and the ice caps melting.

Our addiction to fossil fuels is getting us in hot water

Our addiction to fossil fuels is getting us in hot water

Interestingly, the results of the data analysis were all released before this paper was even published- another move aimed at appeasing the climate sceptics! So whilst some continue to be vocal about their dissent, others including Prof Richard Muller (who started the whole project!) have changed their tune: “We were not expecting this, but as scientists, it is our duty to let the evidence change our minds.”

That’s really powerful, because we don’t always think of scientists having an agenda, but they do- just like any other people they have beliefs and theories about the way the world works. But if we are to get closer to understanding the way it really does work, we must be open to changing or refining those ideas if new evidence arises.

Luckily we aren’t the only ones who say this! Einstein said ” The important thing is not to stop questioning…” and that is one of the most important skills for your students to pick up, not just scientifically but applicable to all walks of life.

We like to model this for teachers and students using Mystery Boxes - try it out as an icebreaker, and to teach How Science Works in a fun, hands-on way.