The Echo of Creation – Astronomers Hear the B of the Big Bang

Dr. Harry Cliff, Curator of our Collider exhibition and the first Science Museum Fellow of Modern Science explores one of the most important discoveries of a generation.

In what has been hailed as one of the most important discoveries of a generation, astronomers working on the BICEP2 telescope at the South Pole have announced that they have detected gravitational tremors from the birth of our Universe imprinted across the sky. The result is the first direct evidence for inflation, the theory that the Universe expanded unimaginably fast, an infinitesimal instant after time zero.

The BICEP2 telescope at the Amundsen-Scott South Pole station.

The BICEP2 telescope at the Amundsen-Scott South Pole station. Credit: BICEP2

The theory of inflation states that the Universe grew in volume by about a factor of at least 1078, a number so vast that it’s impossible to comprehend (its roughly equal to the number of atoms in the universe). This phenomenal expansion took place in an incredibly short time, in about ten billionths of a trillionth of a trillionth of a second, at a time when the Universe was cold, dark and empty. To put this in context, if the full stop at the end of this sentence were to grow by the same factor, it would end up about a hundred times larger than our galaxy.

Inflation is a crucial part of modern cosmological theories and solves many serious problems with the traditional Big Bang model, but so far there has been no direct evidence that it actually happened. However, inflationary theories predict that this violent expansion would have created ripples in space and time known as gravitational waves. These ripples would then have echoed through the cosmos, leaving a mark on the oldest light in the Universe, the Cosmic Microwave Background (CMB).

Discovered fifty years ago by the American radio astronomers Arno Penzias and Robert Wilson (who at first mistook it for pigeon poo in their receiver), the CMB is the remnant of the light emitted 380,000 years after the Big Bang, when the Universe cooled enough for atoms to form and for light to travel freely across space. The discovery of the CMB was one of the most important events in the history of science, providing convincing evidence that the Universe began in a violent hot expansion known as the Big Bang. This ancient light has been stretched from a searing hot 3000 Kelvin to a freezing 2.7 Kelvin by the expansion of space, leaving it as a faint microwave signal coming from the entire sky.

The BICEP2 telescope is based at the Amundsen-Scott station at the geographic South Pole, where temperatures plummet to below minus 70 degrees Celsius in the Antarctic winter and the base is buffeted by blizzards and gale force winds. Despite these incredibly hostile conditions, the BICEP2 telescope is in the perfect location to study the CMB.

The South Pole is around 3000 metres above sea level, and the driest place on Earth, meaning that there is relatively little atmospheric water vapour that would otherwise screen out the CMB signal. This comes with the added advantage that BICEP2 is able to scan the same small piece of sky all year round, by effectively looking straight down from the bottom of the planet to the point known as the celestial south pole.

BICEP2 astronomers spent almost three years scanning the CMB in incredible detail, but yesterday the freezing conditions and hard work paid off spectacularly as they revealed subtle twists in the CMB, a smoking gun for gravitational waves from inflation. In fact, the BICEP2 astronomers were surprised by just how strong the signal was. “This has been like looking for a needle in a haystack, but instead we found a crowbar,” said co-leader Clem Pryke.

Twists in the cosmic microwave background that provide evidence for inflation

Twists in the cosmic microwave background that provide evidence for inflation. Credit BICEP2

Although the result hasn’t been peer reviewed or published in a scientific journal yet, most astronomers agree that the findings look solid. The fifty-strong BICEP2 team have been sitting on their historic result since the end of 2012, and have spent more than a year checking and rechecking to ensure they have taken account of every possible effect, from gravitational lensing to space dust, which might have given a false result.

So what does this mean for our understanding of our Universe? The BICEP2 result is really three Nobel Prize-worthy discoveries in one. They have found the first convincing evidence that inflation really happened, giving science its first glimpse of the moment in which the universe came into being. Second, they have found the strongest evidence yet for gravitational waves, the last prediction of Einstein’s theory of general relativity to be verified, and something that astronomers have been searching for for decades. Third, and by no means least, this discovery demonstrates a deep connection between quantum mechanics and gravity, giving hope that we may one day find evidence of a theory of everything, a theory that would unite our theory of particles and forces with our theory of cosmology and gravity. This would undoubtedly be the greatest prize in science.

If confirmed by other observatories, this incredible result will go down in history as one of the most important scientific discoveries of the 21st century, eclipsing even CERN’s discovery of the Higgs boson in 2012. Nobel Prizes will almost certainly follow. More importantly, this result opens up a new window through which astronomers and cosmologists may, for the first time, glimpse the very moment of creation.

Explore more about astronomy in our Cosmos and Culture gallery and discover the mysteries of deep space in our Hidden Universe 3D IMAX film.

Designing Collider

We sat down with Pippa Nissen from Nissen Richards Studio to talk about her team’s work on our Collider exhibition.

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Can you tell our readers a little about NISSEN RICHARDS studio and the kinds of projects you work on?

We are a bit unusual as a design practice as we work in different sectors; architecture, theatre and exhibition. We love the way that they have slightly different rhythms and processes that all feed on each other. Exhibition design sits nicely between architecture and theatre; it’s about the space and form of different spaces (architecture), but ultimately is about a visitor experience in a timeline across these (theatre).

You went out to CERN several times for the Collider exhibition, what was your impression of the place?

We were completely bowled over by CERN – it was extraordinary as well as full of the ordinary. The sheer size and aesthetic was beautiful – both above ground and below. In the corridors and the warehouses that you arrive in – it felt as if everything was frozen in time from somewhere around 1970 with an austere and functional Swiss graphic language thrown in.

Below ground was like a science fiction film, or being in a giant Ferrari engine – stunningly beautiful and utterly functional.

We also loved the fact that people led normal lives that went on while they were working on such mind-blowing things; and how these clashed unexpectedly. One scientist for example had his kitchen organised so that he could still see the operational screens of CERN – so he could be eating breakfast, helping his children with their homework and watching a collision happening.

The humanness of the spaces also shone through – funny posters about the CERN lifestyle (dancing and singing clubs etc) or jokes pinned up next to an equation and technical drawing of the tunnel – how CERN was filled by thousands of people doing their job – all contributing to something cutting edge and important.

We were particularly taken for example by a scribbled note on a wipe board in the control room saying ‘Don’t forget to reset the undulators!’ next to a comic-book style joke cut out from a magazine about scientists.

What approach did you take in the exhibition design?

We had this amazing experience at CERN, being shown around by extraordinary scientists that were passionate about their work but incredibly friendly and clear in their explanations.

We had a real sense of this being a place where everyone was involved for the good of it all – at the forefront of science – like travelling in space, not knowing exactly what they were about to discover, which was incredibly exciting.

It was full of different people, of different nationalities, with conversations moving freely from English to French to Italian etc. It felt like a truly collaborative and non-hierarchical place.

That is what we wanted to capture – and we decided to base the experience for the visitor to the museum on the same idea – as if you were gaining access to these wonderful people and spaces that few get to see.

Early drawings of the Collider exhibition

Early drawings of the Collider exhibition

As a piece of design, I really enjoy the spatial rhythm of the exhibition; it takes you around the exhibition and helps you in what to look at, giving you clues and gestures, how spaces vary and change as you go through.

Exploring the corridors of CERN, Collider exhibition.

Exploring the corridors of CERN, Collider exhibition. Credit: Science Museum

I also love the graphic language developed by both Finn Ross the video designer (see more of Finn’s photos from his visit to CERN here), and Northover & Brown the 2D designers, which supplements our designs – adding a level of detail in a bold and photographic but abstract way: how the beam of the Collider becomes a character in your journey as a visitor.

There was a very diverse team working on Collider, including people from the worlds of theatre, design, museums and science. What was the development process like?

The “diverse-ness” of the team was hugely enjoyable but also a great challenge. If everyone in the team had been in one room, it could have been quite overwhelming.

There were video designers, lighting designer, sound designer, playwright, costume designers, and actors and there were also other consultants such as graphic designers, conservators, security experts, quantity surveyors, project managers, and of course the scientists and people from CERN.

To find a clear voice we decided to work through workshops; something that we have done before especially in the theatre where we work with many different artists.

This was a very enjoyable process – we would all be together in a room, brainstorm and slowly plot out the visitors’ journey as if we were making a film. We used flipcharts, models, photos, text, films etc that we pinned all round the rooms of various parts of the Science Museum.

Are there any particular highlights during the design process that stand out?

There are so many wonderful moments. But to pick a few; setting up a green screen in the Science Museum while Brian Cox made his cameo; going to the stunning underground spaces of the detectors and filming; and workshop-ing with our playwright and actors in a small rehearsal space in Whitechapel. We all realised that we were creating something quite special.

What has the reaction to the exhibition been?

The day after the exhibition opened we were on tenterhooks and rather perfectly, the Independent Newspaper ran a front-page story with a large picture of Peter Higgs with the headline “Intelligent design: ‘God Particle’ theorist opens sublime exhibition”.

Peter Higgs at the launch of the Collider exhibition.

Peter Higgs at the launch of the Collider exhibition. Credit: Science Museum

I went straight from the newsagent to the framers and now it has pride of place in our studio. The reaction from the press has been very positive with 5* reviews.

But our greatest praise is from visitors who say that they feel as if they have taken a trip to CERN, and understand both what the people are like, and a bit more about the science behind it.

Are there any other exhibitions/projects that inspired your work on Collider?

It is interesting that the work we talked about the most when making Collider – were theatre projects that we had worked on or we had visited. Ones where the audience moves around between events and their journey is tailored and twisted by using actors, musicians, video, props, and installations.

We have worked on a couple of these kinds of projects for Aldeburgh Festival. On “The Way to the Sea” we took over a village in Suffolk for a week, and staged two musical performances in different locations, while a 500 strong audience walked between locations coming across signs, poetry, actors, props, speakers, and installations.

My most memorable type of exhibition event that sticks in my mind and inspired me to study theatre design in the first place is over 20 years ago in the Clink (before it was developed). The artist Robert Wilson worked with a sound designer to create a series of stories that you wandered through as a visitor, each like exquisite tableau.

There were a series of these kind of events in the late 80’s early 90’s and I spent my student years assisting Hildegard Bechtler on a few of her pioneering projects, where she took over buildings to subvert the theatre and create more of a total experience for the audience from the moment they entered the theatre building. It is tremendously exciting to use this in exhibition design years later.

Do you think that the mixture of theatre and exhibition works?

I think that it really works, and for me it is about helping the visitor engage with the content of exhibitions. In a theatrical setting people can have an emotional sensorial connection – through sound, smell, touch – and once engaged they can spend time to understand and interpret the meaning of the objects or artefacts.

I feel that there is a lot of scope in this – and exhibitions are becoming different to what they used to be. It is now not enough to put some objects in a showcase and write a label – I learn from my own children that they often feel like they need a way in when visiting museums.

Ultimately it is all about the objects as they are the authentic elements. However we can help with giving them meaning through designing people’s experience.

We will continue to use elements of theatre in our work, and enjoy the relationship between what is real with its own set of history, and what we are adding to allow you in.

The Collider exhibition runs at the Science Museum until 5 May 2014 (tickets can be booked here). The exhibition will then open at the Museum of Science and Industry in Manchester from May 23 – September 28 2014 (tickets available soon here).

Happy 25th Birthday World Wide Web!

Tilly Blyth, Lead Curator for Information Age, reflects on how the World Wide Web came into existence.

It was 25 years ago today that the World Wide Web was born. Only a quarter of a century ago, but in that short time it has transformed our world. In a recent Great British Innovation Vote, musician Brian Eno said that ‘no technology has been so pervasive so quickly as the internet’.

On 12 March 1989, the British computer scientist Sir Tim Berners-Lee wrote his influential paper “Information Management: A Proposal” and circulated it to colleagues at CERN, the European Organization for Nuclear Research. Scientists from all over the world were brought together at CERN to conduct research, but Berners-Lee identified that there was a problem with the way information was managed and shared between them. His proposal suggested a way of linking documents through a system of hypertext.

Rather wonderfully, Berners-Lee’s boss, Mike Sendall commented that the proposal was ‘Vague but exciting…’ but he agreed to purchase a NeXT computer. The machine was to become the world’s first web server and Berners-Lee used it to build the first ever website. Today, the only evidence on the machine of its important history is a torn sticker that says: “This machine is a server. DO NOT POWER IT DOWN!!”

To celebrate the birthday of the Web, from today we are putting Tim Berners-Lee’s NeXT cube computer on display in our Making the Modern World gallery. In Autumn 2014 it will move into our new Information Age gallery, to play a leading role in the stories of the last 200 years of information and communication technologies.

Baroness Martha Lane-Fox (co-founder of Lastminute.com) visiting the Science Museum to unveil the NeXT cube – the original machine on which Sir Tim Berners-Lee designed the World Wide Web, at an event to mark 25 years since Berners-Lee submitted the first proposal for the web on 12 March 1989 at CERN.

Baroness Martha Lane-Fox visiting the Science Museum to unveil the NeXT cube – the original machine on which Sir Tim Berners-Lee designed the World Wide Web. Credit Science Museum.

Yesterday, we celebrated the arrival of the NeXT computer at the Museum and the impending anniversary, with a reception attended by Martha Lane Fox and Rick Haythornthwaite, Chair of the Web Foundation.

But a birthday for the Web is not just a chance to reflect on the past, but to look towards the future. What kind of Web do we want? Currently only 3 in 5 people across the world have access to the Web. Do we want a tool that is open and accessible to anyone? And do we want to control our public and private data? How can we ensure that the Web isn’t only a device for a few companies, but gives us all rights to achieve our potential? Through the #web25 hashtag Tim Berners-Lee is inviting us all to share our thoughts.

Discover more about how the web has shaped our world in the new Information Age gallery, opening in Autumn 2014.

From Earth to space in a Skinsuit

Julia Attias, a Research Assistant working at the Centre of Human and Aerospace Physiological Sciences (CHAPS), talks about her career in space science for our Beyond Earth festival this weekend. 

My name is Julia Attias and I’m a space physiologist. What does that mean? “Physiology” generally refers to the functions and processes of the human body. Space physiology involves the understanding of how the body functions in space, and particularly in an environment that has far less gravity than on Earth. It’s important to know how low gravity environments affect people taking part in space missions.

I became a space physiologist through completing a Masters degree in Space Physiology and Health at Kings College London in September 2012. The course is designed to help us understand the challenges that an astronaut’s body faces both in space and on return to Earth, such as muscle and bone loss, weakening of the cardiovascular system and visual disturbances.

During my masters dissertation, I started to research the “Gravity-Loading Countermeasure Skinsuit” (GLCS), funded by the European Space Agency (ESA). The Skinsuit was designed by a group of aerospace engineers at MIT, with the aim to recreate the same force that the body experiences through Earth’s natural gravitational pull. This way, if the Skinsuit is worn in environments of zero-gravity, the body should be protected from some of the issues mentioned above.

Testing the Skinsuit

Testing the Skinsuit

I’ve been studying the Skinsuit to see if it really does produce a gravity load similar to Earth’s, and if it could be used in the future alongside exercise activities to keep astronauts fit and keep their heart, muscles and bones strong in space.

Space travel is becoming of increasing interest in the UK, primarily owing to British astronaut Tim Peake, who will be flying to the International Space Station in 2015! During the next year, there will be many discussions about how to keep him healthy while in space.

I’ll be starting a PhD in October 2014 which will involve continuing my research with the Skinsuit to see how it might help tackle issues such as back pain and spinal elongation. This research will combine with other work conducted all over the globe to help keep astronauts like Tim Peake as free of physiological burden as possible for their return to Earth.

Unfortunately I won’t be at the Beyond Earth festival this weekend, because I’ll be testing the Skinsuit with ESA astronaut Thomas Pesquet!  We’ll be testing the Skinsuit in a weightless environment (not in space unfortunately!) through a parabolic flight. We will get into an aircraft which descends rapidly, creating up to 22 seconds of weightlessness at a time – it’s a bit like being on a roller coaster. The flight is to test the Skinsuit in a weightless environment – taking off and putting on the suit to ensure the simple things we take for granted on Earth are possible in zero-gravity!

Thinking big

Curator Ali Boyle blogs on Big Science, a recent discussion about science and society since WWII that was part of our Collider events series.   

If you want to get an understanding of giant scientific projects like CERN, go into your kitchen and take your microwave apart. Actually don’t – we recommend that you leave potentially-destructive household experiments to the guidance of Punk Science. But as Jon Agar points out, a household device that we now take for granted contains a component that is a signature of the sciences since WW2. The magnetron – which generates the short-wavelength radio waves (or ‘microwaves’) to heat up your dinner – was crucial in the development of airborne radar for WW2.

While the names usually associated with the invention are those of University of Birmingham scientists John Randall and Harry Boot, they were not stereotypical lone geniuses in a laboratory: Randall was employed by General Electric, and the research was sponsored by the Admiralty with the aim of detecting submarines. This interplay between academic, industrial and military interests is often characteristic of Big Science – a broad term which historians use to describe the large-scale projects of the sciences of the late 20th century.

The original cavity magnetron is on display in Making the Modern World

The original cavity magnetron is on display in Making the Modern World (Image: Science Museum)

Last week’s conversation between Jon and Lisa Jardine, held in our Collider exhibition, discussed several examples of Big Science, and ways of making sense of it. One handy mnemonic is the Five M’s: money; manpower; big machines; military interests and media attention – although CERN, which celebrates its 60th birthday this year, is a notable exception to the ‘military’ rule. It was founded with the aim of using peaceful scientific research to knit Europe together again after the war. Find out more here.

This pan-European institution preceded later economic and political unions, although over the past 60 years particle physics has also witnessed Britain’s ambiguity about being part of Europe. Immediately after WW2 Britain was one of the few European nations that didn’t need a joint accelerator, as it already had its own large facilities, and there was much discussion before signing the CERN convention. Although UK universities and industrial partners were major players in building the Large Hadron Collider, they might not have been involved at all. Jon showed us a 1984 letter, preserved in the National Archives, in which Margaret Thatcher – who trained as a scientist – expresses doubt about ‘extravagant’ collaborative projects. Mrs T was eventually convinced of the worth of keeping the UK in CERN, and was even partly responsible for one of the most common analogies used to explain the Higgs boson. (Mind you, Peter Higgs himself admits that it’s pretty impossible to explain the mechanism simply, in this interview with Jim Al-Khalili).

On a 1982 visit to CERN, Margaret Thatcher is shown a cavity from the Large Electron Positron Collider - see a similar one in our exhibition. (Image: CERN)

On a 1982 visit to CERN, Margaret Thatcher is shown a cavity from the Large Electron Positron Collider – see a similar one in our exhibition. (Image: CERN)

And sometimes exploring Big Science involves looking at the little things: Lisa says that one of the best ways to understand how our lives are intertwined with science is to explore how science is intertwined with life. Big Science provides plenty of opportunities to explore social interaction amongst large groups, whether it’s the staggering 75,000 people working at the Manhattan Project’s Oak Ridge site as development of the atomic bomb neared completion (see an exhibition of the official photographer’s work here) or the 3,000 people onsite at CERN at any given time. We’ve tried to recreate some of CERN’s everyday scenes in Collider, which runs at the Science Museum until 5 May and then at the Museum of Science and Industry in Manchester from 23 May – 28 September.

The audio recording of Lisa and Jon’s wide-ranging conversation can be listened to here, and you’ll find further coverage in Jon’s book on 20th century science. You can also hear more from them both, and many other historians, on science of all shapes and sizes in Lisa’s radio series.

Beyond Earth

Nicola Burghall is a Content Developer and part of the Contemporary Science team at the Science Museum. Here she blogs about National Astronomy Week and the free upcoming festival Beyond Earth.

In the past few days there has been some awesome space news – from the breathtaking photos of the Aurora Borealis over the UK, to the hundreds of new planets found by the Kepler telescope!

I was so excited to get my first telescope as a child. Growing up in Wales it was often too wet and cloudy to use it, but I will never forget the first time I looked at the moon – I was hooked.

I still have my (slightly battered) telescope ready for those clear winter nights. This month it’s National Astronomy Week (1-8 March) and I hope it will inspire a lot more people to look up at the sky!

The star of the show (although not literally) is Jupiter. The giant planet will be at a high point in UK skies so, if you’ve got the kit, you might be able to take some really good photos. Ever wondered what Jupiter sounds like? I hadn’t even thought about it, but apparently it goes something like this.

Jupiter's Violent Storms. Image taken by Voyager 2 in 1979.

Jupiter’s Violent Storms. Image taken by Voyager 2 in 1979. Credit: NASA

Working at the Science Museum I get to be around an amazing array of astronomical objects – from an 18th Century telescope used by the first professional female astronomer Caroline Herschel, to sensors from the Cassini-Huygens mission to Saturn (currently sending back some spectacular images).

In the Exploring Space gallery you can also find Helen Sharman’s space suit – the first Briton to go into space in 1991. Helen was measured in 54 different places to ensure the perfect fit of her protective suit (not exactly something you can grab off the peg!).

SOKOL space suit worn by Helen Sharman in 1991, manufactured by 'Zvezda'.

SOKOL space suit worn by Helen Sharman in 1991, manufactured by ‘Zvezda’. Credit: SSPL

We’ll also be tweeting about many of our space objects on Tuesday at 1pm. Follow #CosmosTour to discover more about our curator’s favourite objects.

Beyond Earth

Right now I’m busy (and excited to be) organising a FREE festival called Beyond Earth, which will take place at the Science Museum from the 7th-9th March 2014.

You’ll be able to meet scientists and engineers who develop and use the latest technology to explore the vast expanse of space. Find out how their research is helping us to understand the universe we live in, what they have discovered and how you can be a part of it. 

Come along to a talk, watch a demonstration or drop in to our Space Station activities and get crafty making a Sputnik Satellite or have a go launching your own Vostok Rocket. Check out the full festival programme here.

I hope to see you there!

Information Age: Testing, testing, 1 2 3

Jack Gelsthorpe and Lauren Souter are both Audience Researchers working on the new Information Age gallery. Here they discuss some of the work they do in prototyping digital media for the exhibition.

In September 2014 an exciting new gallery, Information Age, which celebrates the history of information and communication technologies, is due to open at the Science Museum.

The gallery will include some truly fascinating objects such as the 2LO transmitter, part of the Enfield telephone Exchange and the impressive Rugby Tuning Coil. As well as these large scale objects, the exhibition will house smaller objects such as a Baudot Keyboard, a Crystal Radio Set, and a Morse Tapper.

Information Age will also contain a host of digital technology and interactive displays where visitors will be able to explore the stories behind the objects and the themes of the exhibition in more detail.

This is where we come in.

As Audience Researchers, it is our job to make sure that visitors can use and engage with the digital displays in this gallery whilst also ensuring that they don’t draw attention away from the objects and the stories they tell.

We do this by testing prototypes of the interactive exhibits, games, web resources and apps with visitors both in the museum and through focus groups. There are three stages in the prototyping process. We begin by showing people a ‘mock up’ of a resource so that we can get feedback on our initial ideas. This can be very basic, for example we have been testing for Information Age with storyboards on paper, handmade models (which have sometimes fallen apart during the testing process!) and computers.

A prototype of an interactive model that represents the Baudot Keyboard

A prototype of an interactive model that represents the Baudot Keyboard

We invite visitors to try these prototypes while we observe and make notes and then we interview them afterwards. This helps us to understand what people think about our ideas, whether people find the resources usable and whether the stories we want to tell are being conveyed effectively. We then discuss our findings with the Exhibition team who are then able to further develop their ideas. The resources are tested a second and third time using the same process to ensure that the final experience is interesting, fun and engaging.

As well as testing these resources in a special prototyping room we also test some of the experiences in the museum galleries to see how visitors react to them in a more realistic setting.

Recently we have been prototyping electro-mechanical interactive models of some of the smaller objects that will be on display in Information Age. These exhibits intend to give visitors an insight into what it would have been like to use these objects whilst explaining the scientific processes behind how they work.

A prototype of an interactive model that represents the Double Needle Telegraph.

A prototype of an interactive model that represents the Double Needle Telegraph.

We will be testing different digital experiences until September, so you may see us in the prototyping room or the galleries. If you see us feel free to say hello and ask us any questions.

Experience these interactive models for yourself in the new Information Age gallery, opening Autumn 2014.

Peter Higgs: The Life Scientific

Quantum physicist and broadcaster Jim Al-Khalili blogs on interviewing Peter Higgs for the new series of The Life Scientific on BBC Radio 4. Discover more about the LHC, particle physics and the search for the Higgs boson in our Collider exhibition

I love name dropping about some of the science superstars I’ve interviewed on The Life Scientific. ”Richard Dawkins was quite charming on the programme, you know”, or “James Lovelock is as sharp as ever”, and so on. So imagine my excitement when I heard I would be interviewing the ultimate science celebrity Peter Higgs.

When I discovered we had secured him for the first programme in the new 2014 series, I knew I had to get something more out of him than to simply regurgitate the popular account of the man as shy, modest and unassuming, and still awkward about having a fundamental particle named after him; or how the Nobel committee were unable to get hold of him on the day of the announcement because he had obliviously wandered off to have lunch with friends.

This was an opportunity for two theoretical physicists – OK, one who has a Nobel Prize to his name and one who doesn’t, but let’s not split hairs here – to chat about the thrill of discovery and to peek into the workings of nature, whilst the outside world listened in.

A couple of Bosons: Peter Higgs with Jim Al-Khalili

A couple of Bosons: Peter Higgs with Jim Al-Khalili. Credit: Charlie Chan

You can listen to the programme from 18 February, but here are a few extracts to whet your appetite.

Can you explain the Higgs mechanism in 30 seconds?

At some point in the programme, inevitably, I had to ask Peter to explain the Higgs mechanism and Higgs field (both more fundamental concepts than the Higgs boson). He gave a beautifully articulate and clear explanation, but I then thought I should ask him to give the ‘idiot’s guide to the Higgs’, just to cover all bases. Here’s how that went:

‘The Boson that Bears my Name’

Working alone in Edinburgh in the sixties, Peter Higgs was considered ‘a bit of a crank’. “No-one wanted to work with me”, he says. In 1964, he predicted the possible existence of a new kind of boson, but at the time there was little interest in this now much-celebrated insight. And in the years that followed, Peter Higgs himself failed to realise the full significance of his theory, which would later transform particle physics.

In July 2012, scientists at the Large Hadron Collider at CERN confirmed that the Higgs boson had indeed been found and Peter Higgs shot to fame. This ephemeral speck of elusive energy is now the subject of car adverts, countless jokes, museum exhibitions and even a song by Nick Cave called the Higgs Boson Blues. But Higgs has always called it the scalar boson or, jokingly, ‘the boson that bears my name’ and remains genuinely embarrassed that it is named after him alone.

In fact, three different research groups, working independently, published very similar papers in 1964 describing what’s now known as the Higgs mechanism. And Higgs told me he’s surprised that another British physicist, Tom Kibble from Imperial College, London didn’t share the 2013 Nobel Prize for Physics, along with him and Belgian physicist, Francois Englert.

On fame
When the 2013 Nobel Prize winners were announced, Peter was famously elusive (much to the frustration of the world’s media). Most people romanticised that he was blissfully unaware of all the fuss or just not that interested. These days, he’s constantly being stopped in the street and asked for autographs, so I asked him whether he enjoyed being famous:

Physics post-Higgs
With the discovery of the Higgs finally ticked off our to-do list, attention is turning to the next challenge: to find a new family of particles predicted by our current front-runner theory, called supersymmetry. Higgs would ‘like this theory to be right’ because it is the only way theorists have at the moment of incorporating the force of gravity into the grand scheme of things.

But what if the Large Hadron Collider doesn’t reveal any new particles? Will we have to build an even bigger machine that smashes subatomic particles together with ever-greater energy? In fact, Peter Higgs believes that the next big breakthrough may well come from a different direction altogether, for example by studying the behaviour of neutrinos, the elusive particles believed the be the most common in the Universe, which, as Higgs admits, “is not the sort of thing the Large Hadron Collider is good for”.

When it started up in 2008, physicists would not have dreamt of asking for anything bigger than the Large Hadron Colider. But today one hears serious talk of designing a machine that might one day succeed it. One candidate is the somewhat unimaginatively named Very Large Hadron Collider. Such a machine would dwarf the Large Hadron Collider. It would collide protons at seven times higher energy than the maximum the Large Hadron Collider is able to reach. And it would require a tunnel 100 km in circumference. Of course this is not the only proposal on the table and there are plenty of other ideas floating about – none of which come cheap, naturally.

There are certainly plenty more deep mysteries to solve, from the nature of dark matter and dark energy to where all the antimatter has gone, and we will undoubtedly find the answers (oh, the delicious arrogance of science). Let’s just hope we don’t have to wait as long as Peter Higgs did.

Keen to discover more? You can listen to Peter Higgs on BBC Radio 4′s The Life Scientific (first broadcast 9am on 18 February) and visit the Collider exhibition at the Science Museum until 5 May 2014. 

Anticipating Antimatter

Collider exhibition curator Dr. Harry Cliff blogs on Dirac’s discoveries and anticipating antimatter.

It was 86 years ago on Saturday that one of the most important scientific papers of the 20th century appeared in the Proceedings of the Royal Society. Written by the young British physicist Paul Dirac, it was simply titled A Quantum Theory of the Electron, and was nothing short of a theoretical triumph.

Paul Dirac

Paul Dirac. Image: Nobel Foundation

In it, Dirac had set out to solve a problem that was occupying some of the greatest minds in physics. To date, quantum mechanics had failed to explain the fine detail of atomic spectra – the discrete wavelengths of light emitted and absorbed as electrons hop between different energy levels in atoms. In particular the electron had to be given a strange property known as “spin” to explain the number of different energy levels.

Spin itself was a rather mysterious quantity. It suggested that that the electron behaved as if it was rotating rapidly on its axis, but a quick calculation showed that this couldn’t be true – the electron would have to be spinning faster than the cosmic speed limit, the speed of light, something forbidden by Einstein’s theory. It also had to be bolted on to quantum mechanics like a clumsy afterthought, without any explanation for its origin.

Dirac, for whom mathematical beauty in the laws of physics was almost a religious cause, was deeply dissatisfied with this awkward situation. He believed that the problem lay in combining the two pillars of modern physics, quantum mechanics (the theory of the very small) and relativity (the theory of the very fast).

He was after an equation describing the behaviour of electron that was consistent with both theories, and also explained the known properties of the electron. Rather surprisingly perhaps, the approach he took was to guess.

An educated guess mind, based on some properties he knew the correct equation must possess and also on his aesthetic desire for simplicity and beauty. Working methodically, he tried equation after equation, discarding them one by one until in late November 1927 he came upon a solution.

Dirac's equation

Dirac’s equation

The equation was perfect. Not only did it accurately reproduce the known energy levels of the hydrogen atom, the property of spin naturally appeared in the equation, without the need to be stuck on by hand afterwards. Spin itself now seemed to be an inevitable consequence of combining relativity and quantum mechanics.

St. John’s College, Cambridge, where Dirac discovered his famous equation.

St. John’s College, Cambridge, where Dirac discovered his famous equation. Image: Andrew Dunn

Dirac, though famously reserved, must have been jumping for joy (though perhaps only in his head). He had pulled off a coup so impressive that his German competitors, Jordan and Heisenberg were left stunned and deflated.

As news spread of Dirac’s success, the man himself was growing increasingly nervous about an odd feature of his equation, one that he had brushed under the carpet in his Royal Society paper.

The equation itself had four solutions, and each solution represented a state that the electron could be in. Two of these corresponded to the garden-variety electron with negative electric charge, but the other two described an electron with positive electric charge and negative energy.

This made no sense whatsoever. No one had ever seen a positively charged electron, and worse still, if these negative energy states existed then ordinary electrons should be able to fall into them, causing an electron to spontaneously switch its charge from negative to positive.

For all the success of the Dirac equation, these negative energy electrons could well have spelt its doom, and no-one was more acutely aware of this than Dirac himself. In fact, this “problem” turned out to be Dirac’s greatest contribution to physics.

It would take Dirac more than three years to understand the true meaning of this extra set of solutions. He had first thought that these negative energy, positively charged electrons might in fact be protons – the positively charged particles inside the atomic nucleus – but he soon realised that this would imply that protons should have the same mass as electrons, when in fact they are roughly 2000 times heavier.

What Dirac eventually reasoned was that these odd solutions actually represented a completely new type of particle, a sort of mirror image of the electron that he dubbed the “anti-electron”. Anti-electrons would look completely identical to ordinary electrons, but positively charged. He also reasoned that other particles like protons should also have anti-versions, and that when a particle met its anti-particle they would annihilate each other.

This must have seemed far-fetched at the time; after all, no one had ever seen an anti-particle. But Dirac was convinced by the beauty of his equation, and in one of the most stunning episodes in modern physics, was proven right just a year later, as Carl Anderson spotted an anti-electron in cosmic ray experiments.

It’s hard to overstate what Dirac had achieved. Through the power of sheer thought, he had predicted the existence of a completely new type of stuff, a stuff never before imagined by scientists. This stuff, what we now call antimatter, is just as real as the stuff you and I are made from, but for some reason doesn’t exist in large quantities in our Universe. This is in fact one of the greatest unsolved mysteries in physics, and one that physicists at the Large Hadron Collider are trying to solve.

Find out more about antimatter by watching this short video or by visiting the Collider exhibition before the 5th May 2014.

Making a Splash!

Katie Burke, who manages the Interactive galleries and Explainer team, talks about the development of the new Splash! app.

One of the things I love about my job within the Learning department is the variety of things I get to work on. When we were approached to help with the development of a new app aimed at our pre-school audience, I was really excited. I’m not particularly techy and I don’t know my RAM from my ROM but that didn’t matter – my role in the project was to make sure the app fitted in with the educational ethos of our children’s interactive galleries in the Museum.

The app was made in partnership with a digital agency called GR/DD. We knew we wanted the app to appeal to our pre-school audience so we looked to our most popular exhibits for this age group for inspiration. The water area in our Garden gallery is a firm favourite of our younger visitors and so it made sense to start there.

Garden water area

The water exhibit in the Garden gallery

GR/DD came up with an idea for an app in which children could experiment with floating, sinking and mixing colours within a bath tub environment. We all loved the idea. For me, bath time as a child holds some really happy memories so I really hoped we could recreate that playful atmosphere with the app.

MotionReactiveWater

Tiliting the screen causes the water to move

Choosing which objects to use in the app was a tricky process! They had to be instantly recognisable to children so that they could make the link between the object and how it behaves when it is put into water. During the development process I’d often show my team of Explainers the draft plans to see if they had any ideas or feedback based on their experience of working within the Garden gallery and it was really useful to get their input.

Early on in the process we all agreed that it was important to include a Parents’ Zone within the app. We wanted to provide some information for parents about how they could use the app to encourage the development of key scientific skills. In our interactive galleries we encourage learning through play and open questioning. For that reason, the Parents’ Zone includes hints and tips about open questions that parents can ask their children whilst they play the app or later on during real bath time.

PARENTS ZONE

Parents’ Zone – tips on how parents could use the app to encourage the development of key scientific skills

After months of development we are all so pleased with the final Splash! app. I love how the water on screen moves and flows as the device is tilted and turned, and the sounds that the objects make when they drop into the water. I think the app perfectly captures the fun atmosphere I remember as a child.

It’s aimed at pre-school children but in my experience the adults enjoy playing just as much as the children. In fact, we should probably add a footnote onto the app description which says “for big kids too!”

If this post has whet your appetite to play on Splash! make sure you run the hot tap to the top of the bath to see what happens – it’s my favourite bit!

Discover more about Splash! (priced at 99p) and our other apps here.