Tag Archives: 3D printing

3D printing gadgets on wheels

Martyn Harris, cyclist and entrepreneur, looks at how 3D printing inspired him to launch a new business. See more examples of 3D Printing in our 3D: Printing the future exhibition.

My two lifelong passions are cycling and engineering. As a child I could regularly be found either riding my bike or constructing some new contraption out of lego. I started racing mountain bikes at the age of 13 and after leaving school, embarked on a four year apprenticeship to become a precision machinist.

In 2000 I joined 3TRPD, a newly formed company specializing in 3D printing. I was instantly hooked by this state-of-the-art process and have been seeking ways to introduce the technology into the bike industry ever since.

3 colour Garmin cycle mounts produced by RaceWare Direct. Image credit: RaceWare Direct

3 colour Garmin cycle mounts produced by RaceWare Direct. Image credit: RaceWare Direct

When I found myself struggling to find a sleek way of mounting my power meter to my Time Trial bike, it was the catalyst that I needed to start designing my own components using 3D printing. I opened my own company, RaceWare Direct at the beginning of 2012.

Neon Garmin mount by RaceWare Direct. Image credit: RaceWare Direct

Neon Garmin mount by RaceWare Direct. Image credit: RaceWare Direct

Having posted on cycle forums that I was making 3D printed computer mounts, the level of enthusiasm was overwhelming. Within a matter of weeks, I had dozens of potential orders and several designers who wanted to help me with new products. By the end of the year, we had a full range of products and had secured UK distribution with Saddleback, a well respected distributor of high end cycle products.

My future vision for RaceWare is for it to grow into the world leader in 3D printed cycle components.

You can see a selection of gadgets produced by RaceWare on display in the Science Museum’s 3D printing exhibition.

‘Tis the season to 3D print your Christmas

Press Officer Laura Singleton explores some festive 3D printing.

Christmas can be one of the most stressful times of the year – with presents to wrap, trees to be put up and cards to be written. Finding the perfect gift or decoration can be expensive, time-consuming and exhausting. Could the rise of 3D printing provide the answer to our seasonal woes and even tap into our hidden creativity?

Earlier this month we were pleased to unveil a dramatic 3D printed titanium star, which sits on top of the Director’s Christmas tree. The star, which measures 44cm wide, is an awe-inspiring example of what can be achieved on a 3D printer. The star’s design is based on fractals, the self-repeating patterns found within a Mandelbrot set.

Close up of Jessica Noble's 3D printed titanium star. Image credits: Science Museum

Close up of Jessica Noble’s 3D printed titanium star. Image credits: Science Museum

The star was the result of a challenge set by the Science Museum’s Director Ian Blatchford at last year’s Christmas party. Attendees to the event were challenged to come up with an innovative design for a star – to be created and displayed on our Christmas tree.

Jessica Noble's 3D printed titanium star. Image credits: Science Museum

Jessica Noble’s 3D printed titanium star. Image credits: Science Museum

Conceived and designed by London based designer Jessica Noble, with help from Nottingham University, the star features a central nylon core and 97 3D printed individual titanium stars printed by Renishaw that were then connected to the core using carbon fibre rods. The individual parts make the star easy to assemble, dissemble and rearrange – a clear advantage over other types of decoration. The Mandelbrot reference gives a nod to the Science Museum’s mathematical collections.

Designer Jessica Noble with her 3D printed star on top of the Director's Christmas tree. Image credits: Science Museum

Designer Jessica Noble with her 3D printed star on top of the Director’s Christmas tree. Image credits: Science Museum

However, you don’t need to be an artist or designer to take advantage of the benefits of 3D printing. Many printers are now available on the high street and can produce smaller scale designs of your choice. Our Inventor in Residence, Mark Champkins, has taken advantage of the technology by creating a range of decorations and gift tags for the Science Museum’s shop that can be 3D printed in under 15 minutes.

A selection of 3D printed snowflakes created in the Science Museum's store. Image credits: Science Museum

A selection of 3D printed snowflakes created in the Science Museum’s store. Image credits: Science Museum

As the museum’s store now sells 3D printers, we’ve set one up to demonstrate how the technology works. Should you wish to buy a decoration such as a snowflake or star, you can choose a design and watch it being printed – ready for you to take home. Why not pay a visit to the museum and try it out?

A 3D printed snowflake designed by Inventor in Residence, Mark Champkins. Image credits: Science Museum

A 3D printed snowflake designed by Inventor in Residence, Mark Champkins. Image credits: Science Museum

The link between science and design was the topic of a recent debate held jointly at the Science Museum and Design Museum and attended by Universities and Science Minister, David Willets MP. Organised with the Technology Strategy Board (TSB) and the Engineering and Physical Sciences Research Council, the debate focused on breaking down language barriers and encouraging interaction between scientists, engineers and designers explained David Bott, Director of Innovation Programmes at the TSB.

3D printing is rapidly changing society – whether at home, work or our leisure activities. You can find more examples of how the technology is growing in our free exhibition, 3D: Printing The Future, which showcases over 600 3D printed objects including prototypes for replacement body organs, bike gadgets and aeroplane parts.

3D printing – an explosion of creativity!

Suzy Antoniw, Content Developer in the Contemporary Science Team, looks at the creation of a new exhibition on 3D printing.

What can make impossible shapes solidly real and create unique, one-off medical treatments that could change your life? A 3D printer of course!

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

A demonstration of a 3D printer making a miniature figurine at the launch of 3D: Printing the Future. Image credit: Science Museum

Around nine months ago we were given the exciting challenge of creating 3D: Printing the Future, a new Contemporary Science exhibition to show off the real-life capabilities of these hugely hyped machines and highlight the latest 3D printing research.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer.

The ‘ghost walking in snow’ effect of a sophisticated laser sintering printer at work – an invisible laser fuses together an object layer by layer out of powdered polymer. Image credit: Science Museum

But hang on, what exactly is a 3D printer? Even if you’ve read stories about them in the news you probably don’t have one sitting on your desk just yet. So here’s our definition: A 3D printer is a manufacturing machine that turns 3D computer data into a physical object, usually by building it in layers. They come in a variety of types that range from simple consumer models to sophisticated industrial printers.

A prosthetic arm concept  made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

A prosthetic arm concept made specially for the exhibition by Richard Hague, Director of Research, with students Mary Amos, Matt Cardell-Williams and Scott Wimhurst at the Additive Manufacturing & 3D Printing Research Group, The University of Nottingham. Image credit: Science Museum

As well as covering the basics, we decided that our exhibition should focus on the incredible things that 3D printers can create – such as replacement body organs and teeth, that could make a difference to the lives of our visitors.

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printed white bone scaffold inside model of a head, by Queensland University of Technology, Institute of Health and Regenerative Medicine, Australia, 2013. Image credit: Science Museum

3D printers have been around for decades, so what’s changed? In recent years the patents on simple 3D printing technologies have run out. 3D printers have become available to more people in the form of affordable consumer models, or even as open source plans freely available on the internet.

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

Hipsterboy 3D printer machine, for display purposes only (several components omitted), by Christopher Paton, United Kingdom, 2013. Image credit: Science Museum

This new freedom to invent has generated an explosion of creativity. And it’s not just hackers, tinkerers and makers who’ve felt the benefits of this new breath of life for engineering and design, but established industry and academia too. So how do you represent a diverse and dynamic explosion of creativity?

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

Close up view of the objects on display in the 3D: Printing The Future exhibition. Image credit: Science Museum

In July we began collecting 3D printed stuff for what has been known as ‘an explosion’, our ‘mass display’, ‘the wave’, ‘the wall’ and (my favourite) a ‘tsunami of objects’. The display contains over 663 objects – the largest number we’ve ever acquired for a Contemporary Science exhibition, thanks to generous loans, donations and the enthusiasm of the maker community.

Among the amazing ‘wave’ of objects you can see a display of 150 miniature 3D printed people – visitors who volunteered to have themselves scanned in 3D at the Museum over the summer holidays. Look closely at the wall and you may spot actress Jenny Agutter reading her script, model Lily Cole and BBC Radio 4 presenter Evan Davis - with his arm in a sling!

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

A wall of miniature 3D printed figures in the new exhibition 3D: Printing the Future. Image credit: Science Museum

The free exhibition is open to the public from 9 October and will run for nine months.

Summer Invention Challenge

By Mark Champkins, Science Museum Inventor in Residence is challenging young visitors to design an invention to help solve a common summer problem. The winner will receive a Makerbot 3D printer worth over £2,000 and get their idea 3D printed and displayed in a new exhibition

When we’re basking in a heat wave, spending a summer holiday in Britain can be the perfect way to unwind. But as we all know, a British summer can present it’s own problems – from annoying wasps, to superheated car journeys, and from rain-soaked barbecues to sand in your sandwiches.

Picture credit: iStock / Science Museum

Picture credit: iStock / Science Museum

This summer we are challenging young visitors to get their thinking caps on and come up with an invention to help solve a common problem that most of us experience at this time of year. The winner will receive a prize of a Makerbot 3D printer worth over £2,000 and get their idea 3D printed and displayed in a new exhibition opening this Autumn.

MakerBot Replicator 2 Desktop 3D Printer

MakerBot Replicator 2 Desktop 3D Printer

Could it be an anti-wasp drink shield, or a sunshade for your ice-cream? Or perhaps a fan that can be clipped to your sunglasses, or a sunhat with a deployable umbrella?

Picture credit: iStock / Science Museum

Picture credit: iStock / Science Museum

To get everyone started we are asking people to think of the places they normally visit when they’re holidaying in Britain and the problems people might face in situations such as the seaside, in the countryside, on a long car journey or at home in the garden. Then think about the pet hates that you normally experience and devise a clever (or funny) solution that could help overcome the problem.

To join the summer invention challenge click here.

3D Gun goes on display

For the past two months the Contemporary Science team has been working hard to obtain a 3D printed gun. This week it arrived, explains Assistant Content Developer Pippa Hough.

The 3D printed gun now on display has a short, but complex history. The design was created by Defence Distributed – a non-profit digital organisation and placed, open source, on their website so anyone could freely download and share it.

The 3D printed gun, now on display in the Science Museum. Credit: Science Museum

The 3D printed gun, now on display in the Science Museum. Credit: Science Museum

Ville Vaarnes, a journalist in Finland, did just that and had the design printed in a university lab using a high quality 3D printer. He then put it together with the help of a gun maker and fired it. The gun broke into several pieces, shattering the gun barrel.

The 3D printed gun in pieces.

The 3D printed gun in pieces. Credit: Science Museum

It is completely illegal to own even a single component of a hand gun in the UK, including a 3D printed gun unless, like the Science Museum, you have a special licence. Manufacturing our own wasn’t an option as we only have a licence to display hand guns. Having seen a video of the gun being fired, we decided this was the only feasible opportunity we would have of acquiring a 3D printed gun.

From an engineering point of view, the gun isn’t particularly special, but displaying it allows us to start a conversation around how the limitless possibilities free access to information, combined with new manufacturing techniques, like 3D printing, will impact on our lives.

On the face it having a printer that could sit on your desk and print any object you have the design for seems like a wonderful prospect. The gun represents the limitless, freely available objects you could print, but also the possible desire or need for regulations to limit our access to this information or the tools to produce them.

The inside of the 3D printed gun. Image: Science Museum

The inside of the 3D printed gun. Image: Science Museum

Creating physically dangerous items like the gun isn’t the only potential threat from 3D printing in the future. You could produce counterfeit designs of a copyrighted item, damaging the business that spent time and money producing the original. What incentive does a business have to produce innovative, exciting products if their designs can be so easily pirated? The music and film industries have struggled with these problems for years. How will other industries cope?

On the other hand what about our freedom to design and print whatever we want? The internet is not restricted by borders. You can download files from all over the world. If the information can’t be controlled can the means of manufacture? Should 3D printers require a licence to own?

When the initial story broke we wrote a news story, including a poll question ‘Should we have access to 3D-print plans for guns?’ 780 people voted, 42% said ‘no’ way 43% voted ‘yes’. The rest voted maybe or I’m not sure. Our visitors are clearly split on the issue; law makers have quite a challenge on their hands trying to maintain the maximum freedom while ensuring public safety.

Jennifer photographed with the new trophy for the Queen Elizabeth prize for engineering.

Queen Elizabeth Trophy Competition Winner Announced

This tree-like structure that symbolises the growth of engineering has been chosen as the trophy for a new global prize. The Queen Elizabeth Prize is considered to be the Nobel prize for engineering and yesterday the winner of the trophy competition was announced by Ian Blatchford, Director of the Science Museum Group.

Jennifer photographed with the new trophy for the Queen Elizabeth prize for engineering.

The prestigious award was given to Jennifer Leggett, an A Level student from Sevenoaks in Kent, who was the brains behind the winning design. Jennifer fought off tough competition from a shortlist of ten young designers, aged between 16 and 22, to win the prize and will have the unique opportunity to see her trophy presented to the winner of the Queen Elizabeth Prize at the inaugural ceremony in March 2013. Following the announcement the delighted Jennifer thanked the judges and congratulated her fellow competitors commenting on the quality and range of all the designs in the room.

3 of the 5 judges photographed with Jennifer Leggett and her trophy. From left: Ian Blatchford, Director of the Science Museum Group; Yewande Akinola, Engineer; Jennifer Leggett; Nick Serota, Director of the Tate.

The panel, who had the tough job of selecting the trophy, consisted of: Science Museum Director and Chair of judges, Ian Blatchford; architect Dame Zaha Hadid; Director of the Tate, Sir Nicholas Serota; Design Museum Director, Deyan Sudjic; and Engineer, Yewande Akinola. During the judging competitors were asked to explain the inspiration behind their design and what material would best fit their trophy but, on announcing the winner, Ian admitted that the judges had to add two additional criteria to help them whittle it down and come to a decision – whether the Queen would take pleasure from handing the prize and how the winner of the QE prize might feel when collecting their award. The winning trophy was described as “jewel-like” and was praised for its strong design which reflected the creativity, power and importance of engineering in the world today.

Reflecting on the competition Ian Blatchford said, “We set a challenge for young people to come up with an iconic trophy design that best embodies the wonder of modern engineering and reflects the merging worlds of science, art, design and engineering. Jennifer has shown real imagination and talent – all the judges were enormously impressed with her design.”

At the awards ceremony at the Science Museum’s Smith Centre, all ten of the shortlisted designers saw their trophy brought to life having had their design transformed into 3D printed prototypes by BAE Systems using the latest in Additive Layer Manufacturing technology. These replicas illustrated the intricate designs of each of the trophies which varied from Alexander Goff’s ‘Flowers and Thorns’ a towering structure of petals and sharp thorns, to Gemma Pollock’s ‘Bright Perceptions’ that centred around a double helix, and Dominic Jacklin’s ‘The Nest’ a vortex of geometric shapes which was concieved to represent the ubiquity of engineering in our lives.

The QE prize is a new £1 million global engineering prize, launched in 2012 which rewards and celebrates an individual (or up to three people) responsible for a ground-breaking innovation in engineering that has been of global benefit to humanity. The first winner of the QE prize will be announced in March 2013 and will be presented with Jennifer’s trophy by the Queen in a ceremony at Buckingham Palace.