Tag Archives: design

In search of perfect sound – introducing Britain’s largest horn loudspeaker

Aleks Kolkowski, former sound artist-in-residence, remembers his first encounter with the Museum’s exponential horn.

 A long black metal tube, slightly tapered and almost 9-foot-long lay on a row of filing cabinets at Blythe House, the Science Museum’s storage facility. The object was pointed out by John Liffen, the Museum’s Curator of Communications, who guided me during a research visit of the collections in 2008. It was all that remained of a mighty horn loudspeaker that was demonstrated in the Museum during the 1930s, John explained. A demolition accident had almost totally destroyed it in 1949.

John Liffen holding the only surviving section of the Science Museum’s exponential horn. Credit: Science Museum

John Liffen holding the only surviving section of the Science Museum’s exponential horn. Credit: Science Museum

Now the tube assumed a more fascinating form, like a fossil or a dinosaur bone as we delved into audio archeology. The story of the horn, researched in great detail by John, sparked an interest in me. Four years later in 2012, on being appointed as the Museum’s first-ever sound artist-in residence, I was given a wonderful opportunity to initiate its reconstruction.

The exponential horn loudspeaker was designed in 1929 by the Museum’s curator of  ‘Electrical Communication’ R. P. G. Denman who also personally built a radio receiver to run in tandem with it. The purpose of this new sound system was to provide the public with demonstrations of the highest quality broadcast sound that was obtainable at the time. Denman saw it as setting a benchmark for audio quality, his aim was, in his words “to provide a standard by which commercial apparatus could be judged”.

The horn measured 27 feet (8.23m) in length with a cross section that curved exponentially from 1 1/16 inches (27mm) to a massive 7-foot-1-inch square (2.16m sq.) at the horn mouth. The science and theory of how horns propagate sound had only begun to emerge in the mid-1920s. It was found that a horn with an exponential shape was the most effective means of converting the sound energy from high pressure, low velocity vibrations produced at the narrow end of the horn, into low pressure, high velocity vibrations at its mouth, then radiated into the outside air. However, in order to reproduce the lowest sounding frequencies, this type of horn has to be very long with a correspondingly large opening.

An early photograph of the horn prior to its installation at the Science Museum. Published in Amateur Wireless, October 19, 1929. Credit: British Library

An early photograph of the horn prior to its installation at the Science Museum. Published in Amateur Wireless, October 19, 1929. Credit: British Library

Denman, an expert on loudspeakers, specially designed the horn in order to reproduce frequencies as low as 32Hz and up to 6kHz. This was achieved by loading it to one of the latest moving-coil driver units from the Western Electric Company (U.S.A.) namely the WE 555W, widely used in cinema sound systems of the time and now considered to be one of the greatest loudspeaker drivers ever made.

The Museum’s Western Electric 555W Compression Driver used with the Exponential Horn Loudspeaker from 1929 – 1939. Credit: Science Museum

The Museum’s Western Electric 555W Compression Driver used with the Exponential Horn Loudspeaker from 1929 – 1939. Credit: Science Museum

From 1930 until the outbreak of WWII in 1939, the apparatus was demonstrated daily in the Museum’s Radio Communication gallery. The giant horn mouth appeared through the wall above the entrance while the rest of it hung conspicuously in the adjacent Agricultural Implements gallery. It was built into the Museum’s infrastructure and may be described as being its very first sound installation.

Concerts broadcast on the BBC’s London Regional programmes provided the content for the demonstrations. Critical reactions were positive and for audiences at the time, accustomed to limited bandwidth, interference and distortion, the sound must have truly been a revelation. The Museum’s Radio gallery became a popular lunchtime destination, where sandwiches were cheerfully munched while listening to the classics or Wurlitzer cinema organ music, the audio reproduced in glorious full-range. It left an indelible impression on those who heard it, including John Liffen’s own uncle. Writing in the Audio Engineering Society Journal of April 1975, the audio experts Percy and Geoffrey L. Wilson opined that “no superior loudspeaker has to date been demonstrated in Britain”.

The horn’s mouth over the entrance to the Radio Communication gallery is shown by a museum attendant standing on a showcase! From Popular Wireless, October, 1930. Credit: British Library

The horn’s mouth over the entrance to the Radio Communication gallery is shown by a museum attendant standing on a showcase! From Popular Wireless, October, 1930. Credit: British Library

Fast-forward to 2014 and we have an opportunity to hear the horn again.

This is thanks in no small part to the magnificent efforts of the Museum’s Workshops who undertook the reconstruction project with gusto. The missing 18-feet of the horn was rebuilt over an intense 8-month period following Denman’s original specification, although fibre-glass was used in place of the original lead and tin alloy. Led by the Workshops manager Steve Long, the team has succeeded in recreating the single largest loudspeaker in Britain.

The newly reconstructed horn being tested by the author at Blythe House in August 2013. Credit: Science Museum

The newly reconstructed horn being tested by the author at Blythe House in August 2013. Credit: Science Museum

The programme for the upcoming installation is a mixture of past and present, allowing us to listen to the horn in old and new ways. Archive material from the BBC will be heard alongside recent recordings made within the Science Museum. Resonance 104.4FM will be resident in the space, broadcasting live from the Museum, while lunchtime concerts via BBC Radio 3 will mirror the original demonstrations of the 1930s. A series of events, including live music, poetry and performance will also showcase new works for the horn created by a variety of artists, writers and radio programme-makers.

The title, “In Search of Perfect Sound”, refers to Roderick Denman’s quest for audio nirvana. Our modern ears may have become accustomed to high fidelity audio and surround sound, but the exponential horn, with its extraordinary sound presence and a distinct three-dimensional effect, still holds an immersive power of its own.

I’m very proud to have played a part in giving the Denman horn a new lease of life and to have witnessed its exponential metamorphosis, from that modest-looking metal tube, cocooned above all those filing cabinets.

The Exponential Horn: In Search of Perfect Sound opens at the Media Space Studio on 20th May. An afternoon of talks and presentations about the horn and the history of radio in Britain will be held on 12th July. Speakers include John Liffen, Aleks Kolkowski, Dan Wilson and Seán Street.

Aleks Kolkowski is a sound artist, violinist and composer with a special interest in early sound recording and reproduction technology.

Designing Collider

We sat down with Pippa Nissen from Nissen Richards Studio to talk about her team’s work on our Collider exhibition.

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Left to right: Pippa Nissen, Simon Rochowski and Ashley Fridd from Nissen Richards Studio

Can you tell our readers a little about NISSEN RICHARDS studio and the kinds of projects you work on?

We are a bit unusual as a design practice as we work in different sectors; architecture, theatre and exhibition. We love the way that they have slightly different rhythms and processes that all feed on each other. Exhibition design sits nicely between architecture and theatre; it’s about the space and form of different spaces (architecture), but ultimately is about a visitor experience in a timeline across these (theatre).

You went out to CERN several times for the Collider exhibition, what was your impression of the place?

We were completely bowled over by CERN – it was extraordinary as well as full of the ordinary. The sheer size and aesthetic was beautiful – both above ground and below. In the corridors and the warehouses that you arrive in – it felt as if everything was frozen in time from somewhere around 1970 with an austere and functional Swiss graphic language thrown in.

Below ground was like a science fiction film, or being in a giant Ferrari engine – stunningly beautiful and utterly functional.

We also loved the fact that people led normal lives that went on while they were working on such mind-blowing things; and how these clashed unexpectedly. One scientist for example had his kitchen organised so that he could still see the operational screens of CERN – so he could be eating breakfast, helping his children with their homework and watching a collision happening.

The humanness of the spaces also shone through – funny posters about the CERN lifestyle (dancing and singing clubs etc) or jokes pinned up next to an equation and technical drawing of the tunnel – how CERN was filled by thousands of people doing their job – all contributing to something cutting edge and important.

We were particularly taken for example by a scribbled note on a wipe board in the control room saying ‘Don’t forget to reset the undulators!’ next to a comic-book style joke cut out from a magazine about scientists.

What approach did you take in the exhibition design?

We had this amazing experience at CERN, being shown around by extraordinary scientists that were passionate about their work but incredibly friendly and clear in their explanations.

We had a real sense of this being a place where everyone was involved for the good of it all – at the forefront of science – like travelling in space, not knowing exactly what they were about to discover, which was incredibly exciting.

It was full of different people, of different nationalities, with conversations moving freely from English to French to Italian etc. It felt like a truly collaborative and non-hierarchical place.

That is what we wanted to capture – and we decided to base the experience for the visitor to the museum on the same idea – as if you were gaining access to these wonderful people and spaces that few get to see.

Early drawings of the Collider exhibition

Early drawings of the Collider exhibition

As a piece of design, I really enjoy the spatial rhythm of the exhibition; it takes you around the exhibition and helps you in what to look at, giving you clues and gestures, how spaces vary and change as you go through.

Exploring the corridors of CERN, Collider exhibition.

Exploring the corridors of CERN, Collider exhibition. Credit: Science Museum

I also love the graphic language developed by both Finn Ross the video designer (see more of Finn’s photos from his visit to CERN here), and Northover & Brown the 2D designers, which supplements our designs – adding a level of detail in a bold and photographic but abstract way: how the beam of the Collider becomes a character in your journey as a visitor.

There was a very diverse team working on Collider, including people from the worlds of theatre, design, museums and science. What was the development process like?

The “diverse-ness” of the team was hugely enjoyable but also a great challenge. If everyone in the team had been in one room, it could have been quite overwhelming.

There were video designers, lighting designer, sound designer, playwright, costume designers, and actors and there were also other consultants such as graphic designers, conservators, security experts, quantity surveyors, project managers, and of course the scientists and people from CERN.

To find a clear voice we decided to work through workshops; something that we have done before especially in the theatre where we work with many different artists.

This was a very enjoyable process – we would all be together in a room, brainstorm and slowly plot out the visitors’ journey as if we were making a film. We used flipcharts, models, photos, text, films etc that we pinned all round the rooms of various parts of the Science Museum.

Are there any particular highlights during the design process that stand out?

There are so many wonderful moments. But to pick a few; setting up a green screen in the Science Museum while Brian Cox made his cameo; going to the stunning underground spaces of the detectors and filming; and workshop-ing with our playwright and actors in a small rehearsal space in Whitechapel. We all realised that we were creating something quite special.

What has the reaction to the exhibition been?

The day after the exhibition opened we were on tenterhooks and rather perfectly, the Independent Newspaper ran a front-page story with a large picture of Peter Higgs with the headline “Intelligent design: ‘God Particle’ theorist opens sublime exhibition”.

Peter Higgs at the launch of the Collider exhibition.

Peter Higgs at the launch of the Collider exhibition. Credit: Science Museum

I went straight from the newsagent to the framers and now it has pride of place in our studio. The reaction from the press has been very positive with 5* reviews.

But our greatest praise is from visitors who say that they feel as if they have taken a trip to CERN, and understand both what the people are like, and a bit more about the science behind it.

Are there any other exhibitions/projects that inspired your work on Collider?

It is interesting that the work we talked about the most when making Collider – were theatre projects that we had worked on or we had visited. Ones where the audience moves around between events and their journey is tailored and twisted by using actors, musicians, video, props, and installations.

We have worked on a couple of these kinds of projects for Aldeburgh Festival. On “The Way to the Sea” we took over a village in Suffolk for a week, and staged two musical performances in different locations, while a 500 strong audience walked between locations coming across signs, poetry, actors, props, speakers, and installations.

My most memorable type of exhibition event that sticks in my mind and inspired me to study theatre design in the first place is over 20 years ago in the Clink (before it was developed). The artist Robert Wilson worked with a sound designer to create a series of stories that you wandered through as a visitor, each like exquisite tableau.

There were a series of these kind of events in the late 80’s early 90’s and I spent my student years assisting Hildegard Bechtler on a few of her pioneering projects, where she took over buildings to subvert the theatre and create more of a total experience for the audience from the moment they entered the theatre building. It is tremendously exciting to use this in exhibition design years later.

Do you think that the mixture of theatre and exhibition works?

I think that it really works, and for me it is about helping the visitor engage with the content of exhibitions. In a theatrical setting people can have an emotional sensorial connection – through sound, smell, touch – and once engaged they can spend time to understand and interpret the meaning of the objects or artefacts.

I feel that there is a lot of scope in this – and exhibitions are becoming different to what they used to be. It is now not enough to put some objects in a showcase and write a label – I learn from my own children that they often feel like they need a way in when visiting museums.

Ultimately it is all about the objects as they are the authentic elements. However we can help with giving them meaning through designing people’s experience.

We will continue to use elements of theatre in our work, and enjoy the relationship between what is real with its own set of history, and what we are adding to allow you in.

The Collider exhibition runs at the Science Museum until 5 May 2014 (tickets can be booked here). The exhibition will then open at the Museum of Science and Industry in Manchester from May 23 – September 28 2014 (tickets available soon here).

Generating Ideas: drawing inspiration from the Science Museum

Inventor in Residence Mark Champkins writes about drawing inspiration from the Science Museum. A selection of Mark’s products can be bought from the Science Museum. 

Coming up with ideas and inventions “on demand” is tricky. I work as the Science Museum’s Inventor in Residence, and it is my job to generate a stream of products that are interesting to the science-savvy, whilst engaging to those new to the Museum. If possible the products should also be wildly popular and generate lots of income. No pressure then.

Fortunately, the Museum provides an incredibly fertile space for generating ideas. Though my ideas tend toward the quirky, rather than world-changing, there are so many examples of ingenuity, insight and inventiveness, it’s hard not to be inspired. But where to start?

It’s not widely known that the Science Museum is home to just 5% of the Museum’s collection. The majority is tucked away in Blythe House in London, and at Wroughton, a former RAF airbase in Wiltshire. However, as the Science Museum is a showcase for the most iconic items in the collection, for me, it is the richest source of ideas.

The Wroughton site houses large objects in aircraft hangars. Image credit: Science Museum

Our Wroughton site houses large objects in aircraft hangars. Image credit: Science Museum

I’m particularly drawn to the Making the Modern World gallery. In many ways it is the centerpiece of the Science Museum. Located on the ground floor, it exhibits objects chronologically, on a timeline starting in the 1770′s in the heyday of the Industrial Revolution, and ending with the Clock of the Long Now, a clock mechanism intended to keep time for 10,000 years. Walking through the gallery, is walking through the recent history of human development.

Visitors in the Making the Modern World gallery. Image credit: Science Museum

Visitors in the Making the Modern World gallery. Image credit: Science Museum

There are a couple of items in Making the Modern World that have directly inspired new products. One of the first glass cases that you encounter in the gallery contains what looks like a whisk with an accompanying pot. In fact it is the apparatus, made by James Prescott Joule, that defines the standard unit of energy, or “Joule”. Filling the pot with water, a “Joule” of energy is defined as the energy required to whisk the water until it has raised the temperature of the water by one degree.

Beauty in the Making

Beauty in the Making: Telling the story of how materials are manufactured, including an aluminium water bottle

This device got me thinking about how SI units are defined, and of measurement in general, and led to the creation of the Word Count Pencil, a pencil that has a scale printed along it’s length, to estimate the number of words you have written as the pencil wears out. A Gramophone in one of the cases along the side of the gallery inspired the iGramo, non-electrical method to amplify iPhones. Electro-magnets in the central glass cases, inspired my Levitating Cutlery idea. A sample of the first pure aluminium inspired me to design an aluminium water bottle that is decorated with an explanation of how the material is extracted, refined, and formed into the bottle.

Often, as I sit amongst the items in the gallery, trying to think up new product ideas, is gratifying to imagine all the inventors and scientists whose work surrounds me, doing likewise. Conjuring up new inventions and ideas using the power of their imagination. It makes me want to think harder and try to achieve more, and I find that profoundly inspiring.

I would urge anyone tasked with generating ideas, or impressed by ingenuity to treat themselves to a trip to the Science Museum. You never know what you might come up with!

3D Gun goes on display

For the past two months the Contemporary Science team has been working hard to obtain a 3D printed gun. This week it arrived, explains Assistant Content Developer Pippa Hough.

The 3D printed gun now on display has a short, but complex history. The design was created by Defence Distributed – a non-profit digital organisation and placed, open source, on their website so anyone could freely download and share it.

The 3D printed gun, now on display in the Science Museum. Credit: Science Museum

The 3D printed gun, now on display in the Science Museum. Credit: Science Museum

Ville Vaarnes, a journalist in Finland, did just that and had the design printed in a university lab using a high quality 3D printer. He then put it together with the help of a gun maker and fired it. The gun broke into several pieces, shattering the gun barrel.

The 3D printed gun in pieces.

The 3D printed gun in pieces. Credit: Science Museum

It is completely illegal to own even a single component of a hand gun in the UK, including a 3D printed gun unless, like the Science Museum, you have a special licence. Manufacturing our own wasn’t an option as we only have a licence to display hand guns. Having seen a video of the gun being fired, we decided this was the only feasible opportunity we would have of acquiring a 3D printed gun.

From an engineering point of view, the gun isn’t particularly special, but displaying it allows us to start a conversation around how the limitless possibilities free access to information, combined with new manufacturing techniques, like 3D printing, will impact on our lives.

On the face it having a printer that could sit on your desk and print any object you have the design for seems like a wonderful prospect. The gun represents the limitless, freely available objects you could print, but also the possible desire or need for regulations to limit our access to this information or the tools to produce them.

The inside of the 3D printed gun. Image: Science Museum

The inside of the 3D printed gun. Image: Science Museum

Creating physically dangerous items like the gun isn’t the only potential threat from 3D printing in the future. You could produce counterfeit designs of a copyrighted item, damaging the business that spent time and money producing the original. What incentive does a business have to produce innovative, exciting products if their designs can be so easily pirated? The music and film industries have struggled with these problems for years. How will other industries cope?

On the other hand what about our freedom to design and print whatever we want? The internet is not restricted by borders. You can download files from all over the world. If the information can’t be controlled can the means of manufacture? Should 3D printers require a licence to own?

When the initial story broke we wrote a news story, including a poll question ‘Should we have access to 3D-print plans for guns?’ 780 people voted, 42% said ‘no’ way 43% voted ‘yes’. The rest voted maybe or I’m not sure. Our visitors are clearly split on the issue; law makers have quite a challenge on their hands trying to maintain the maximum freedom while ensuring public safety.

The Dambusters, Barnes Wallis and the Bouncing Bomb

Seventy years ago, in the early hours of the 17th May 1943, 8 Lancaster bombers flew back to RAF Scampton and into the history books as part of the daring Dambusters raid. The 617 squadron, formed only two months earlier, had successfully destroyed two dams (Mohne and Eder), and damaged a third (Sorpe) using the ingenius invention of Barnes Wallis – a four tonne bouncing bomb.

Shortly before he died, Wallis donated the bulk of his papers to the Science Museum, including design notes, photographs, correspondence and reports relating to his work. We’ve picked out a few images below to tell the story of the bouncing bomb.

Taken from Wallis' report on the proposed method of attaching dams. The diagram shows the path of the Spherical Surface Torpedo (bouncing bomb) . Image credit: BAE Systems/SSPL

Taken from Wallis’ report on the proposed method of attaching dams. The diagram shows the path of the Spherical Surface Torpedo (bouncing bomb) . Image credit: BAE Systems/SSPL

Even before the war begin, the UK Government had identified the three German dams as potential targets, but had no suitable weapons to launch an attack. Wallis’ idea is simple to explain, but was far more complex to put into action: bounce a 4 tonne rotating bomb across 400m of water until it hits the dam, sinks and explodes.

Equipment used to hold and spin the bouncing bombs. Image: BAE Systems/SSPL

Equipment used to hold and spin the bouncing bombs. Image: BAE Systems/SSPL

Bouncing bombs allowed Wallis to completely avoid the torpedo nets protecting the dam. However, to get the bounce just right, the Lancaster bombers needed to approach the dams flying just 20m above the water while traveling at 230mph (more on how this was done can be read here).

At exactly 389 metres from the dam wall – calculated by triangulating with the dam’s towers – the bombs were released. Wallis calculated that backspin would stabilise the bombs in ‘flight’, help create the bounce and forced the bomb to cling to the face of the dam once it sank.

Bouncing bomb trials. Film stills signed by Barnes Wallis.

Bouncing bomb trials. Film stills signed by Barnes Wallis. Credit: BAE Systems/SSPL

Even with practice runs, it took many attempts to bounce the bombs correctly, and trials with live ammunition were only conducted three days before the raids. To this day, the skill and bravery of the 617 squadron (113 men in total), who flew low over enemy territory under the cover of darkness, remains breathtaking.  

After the war, Wallis continued his work on aircraft design (before WWII he was a pioneer of geodetic design, used to build the largest airship of its time, the R100), designing “swing wing” aircraft suited to hypersonic flight. 

Barnes Wallis with his hypersonic aircraft model

Barnes Wallis with his hypersonic aircraft model. Credit: Science Museum/SSPL

Our Senior Keeper, Andrew Nahum, was recently interviewed about Barnes Wallis, his bouncing bomb and other work. The full interview can be read here.

Jennifer photographed with the new trophy for the Queen Elizabeth prize for engineering.

Queen Elizabeth Trophy Competition Winner Announced

This tree-like structure that symbolises the growth of engineering has been chosen as the trophy for a new global prize. The Queen Elizabeth Prize is considered to be the Nobel prize for engineering and yesterday the winner of the trophy competition was announced by Ian Blatchford, Director of the Science Museum Group.

Jennifer photographed with the new trophy for the Queen Elizabeth prize for engineering.

The prestigious award was given to Jennifer Leggett, an A Level student from Sevenoaks in Kent, who was the brains behind the winning design. Jennifer fought off tough competition from a shortlist of ten young designers, aged between 16 and 22, to win the prize and will have the unique opportunity to see her trophy presented to the winner of the Queen Elizabeth Prize at the inaugural ceremony in March 2013. Following the announcement the delighted Jennifer thanked the judges and congratulated her fellow competitors commenting on the quality and range of all the designs in the room.

3 of the 5 judges photographed with Jennifer Leggett and her trophy. From left: Ian Blatchford, Director of the Science Museum Group; Yewande Akinola, Engineer; Jennifer Leggett; Nick Serota, Director of the Tate.

The panel, who had the tough job of selecting the trophy, consisted of: Science Museum Director and Chair of judges, Ian Blatchford; architect Dame Zaha Hadid; Director of the Tate, Sir Nicholas Serota; Design Museum Director, Deyan Sudjic; and Engineer, Yewande Akinola. During the judging competitors were asked to explain the inspiration behind their design and what material would best fit their trophy but, on announcing the winner, Ian admitted that the judges had to add two additional criteria to help them whittle it down and come to a decision – whether the Queen would take pleasure from handing the prize and how the winner of the QE prize might feel when collecting their award. The winning trophy was described as “jewel-like” and was praised for its strong design which reflected the creativity, power and importance of engineering in the world today.

Reflecting on the competition Ian Blatchford said, “We set a challenge for young people to come up with an iconic trophy design that best embodies the wonder of modern engineering and reflects the merging worlds of science, art, design and engineering. Jennifer has shown real imagination and talent – all the judges were enormously impressed with her design.”

At the awards ceremony at the Science Museum’s Smith Centre, all ten of the shortlisted designers saw their trophy brought to life having had their design transformed into 3D printed prototypes by BAE Systems using the latest in Additive Layer Manufacturing technology. These replicas illustrated the intricate designs of each of the trophies which varied from Alexander Goff’s ‘Flowers and Thorns’ a towering structure of petals and sharp thorns, to Gemma Pollock’s ‘Bright Perceptions’ that centred around a double helix, and Dominic Jacklin’s ‘The Nest’ a vortex of geometric shapes which was concieved to represent the ubiquity of engineering in our lives.

The QE prize is a new £1 million global engineering prize, launched in 2012 which rewards and celebrates an individual (or up to three people) responsible for a ground-breaking innovation in engineering that has been of global benefit to humanity. The first winner of the QE prize will be announced in March 2013 and will be presented with Jennifer’s trophy by the Queen in a ceremony at Buckingham Palace.