Tag Archives: Higgs

A Nobel Tradition

Content Developer Rupert Cole explores the most famous science prize of all, and some of its remarkable winners. 

Today, science’s most prestigious and famous accolades will be awarded in Stockholm: the Nobel Prize.

Before we raise a toast to this years’ winners in physics, Peter Higgs and Belgian François Englert, let’s take a look back at the man behind the Prize, and some of its winners.

Alfred Nobel

A Swedish explosives pioneer who made his millions from inventing dynamite, Alfred Nobel left in his will a bequest to establish an annual prize for those who have “conferred the greatest benefit to mankind”, across five domains: physics, chemistry, physiology or medicine, literature and peace. To this end, he allocated the majority of his enormous wealth.

Alfred Nobel. Credit: Science Museum / SSPL

Alfred Nobel. Credit: Science Museum / SSPL

When Nobel’s will was read after his death in 1896, the prize caused an international controversy. Unsurprisingly, Nobel’s family were not best pleased, and vigorously opposed its establishment. It took five years before it was finally set up and the first lot awarded – the 1901 physics accolade going to Wilhelm Rontgen for his 1895 discovery of x-rays.

Paul Dirac’s maternal mortification

When the phone rang on 9 November 1933, the exceptionally gifted yet eccentric Paul Dirac was a little taken back to hear a voice from Stockholm tell him he had won the Nobel Prize.

The looming press attention, which had always surrounded the Nobels, made the reclusive Dirac consider rejecting the award, until Ernest Rutherford – JJ Thomson’s former student and successor as Cavendish professor – advised him that a “refusal will get you more publicity”.

Under different circumstances Rutherford had been similarly “startled” when he found out he was to be given a Nobel – a physicist through and through, he was awarded the 1908 Prize in Chemistry, joking his sudden “metamorphosis into a chemist” was very unexpected.

Dirac shared the 1933 physics prize with Erwin Schrödinger – famed for his eponymous equation and dead-and-alive cat – for their contributions to quantum mechanics. Each was allowed one guest at the award ceremony held at the Swedish Royal Academy of Science. Schrödinger brought his wife, Dirac brought his mother.

Quantum theorists: Wolfgang Pauli and Paul Dirac, 1938. Credit: CERN

Quantum theorists: Wolfgang Pauli and Paul Dirac, 1938. Credit: CERN

Florence Dirac did what all good mothers do: embarrass her son in every way imaginable. The first incident came at a station café in Malmo, where in this unlikely setting an impromptu press conference took place.

Dirac, who had been described by the British papers as “shy as a gazelle and modest as a Victorian maid,” was asked “did the Nobel Prize come as a surprise?” Before he could answer, Dirac’s mother butted in: “Oh no, not particularly, I have been waiting for him to receive the prize as hard as he has been working.”

The next embarrassment came when Mrs Dirac failed to wake up when the train reached Stockholm. She was ejected by a guard, who had thrown her garments and belongings out of the carriage window. The Diracs arrived late, and meekly hid from the attention of the welcoming party – who had been wondering where they were.

The third and final maternal faux pas came at Stockholm’s Grand Hotel. The pair had been booked into the finest room – the bridal suite. Mrs Dirac, displeased, demanded a room of her own, which Dirac paid for out of his own pocket. It doesn’t matter if you’ve co-founded quantum mechanics, predicted antimatter and won the Nobel Prize; mothers will be mothers.

Peter’s Pride

Like other humble laureates before him, Peter Higgs wished to duck out of the press furore surrounding the Nobel. At the time of the announcement on the 8th October there was a nail-biting delay. The cause? The Nobel committee could not get hold of Higgs, who had turned his phone off and planned to escape to the Scottish Highlands.

As Peter Higgs revealed to me at the opening of the Collider exhibition at the Science Museum, if it was not for a dodgy Volkswagen beetle or public transport, Peter would have made it to the Highlands on Nobel day. Instead, he just laid low in Edinburgh.

Peter Higgs (right) with friend Alan Walker and the personalised bottles of London Pride at Collider opening. Credit: Science Museum.

Peter Higgs (right) with friend Alan Walker and the personalised bottles of London Pride at Collider exhibition opening. Credit: Science Museum.

At the Collider launch last month, we celebrated with Higgs in the appropriate way: over a personalised bottle of London Pride ale – the same beverage he chose in favour of champagne on the flight home from CERN’s public announcement of the Higgs boson discovery. So, when Englert and Higgs receive the honour today, let’s all raise two glasses: an English Ale and a Belgian Blonde!

For more on many of the Nobel prize-winning discoveries in physics history, including those of Dirac, Englert and Higgs, visit the Collider exhibition at the Science Museum.

Story of the Search for the Higgs Boson wins Royal Society Prize

Will Stanley, Science Museum Press Officer, blogs on the latest winner of the 2013 Royal Society Winton Prize for Science Books.

Theoretical physicist, presenter and author, Sean Carroll, has won the world’s most prestigious science book prize, with his story of the search for the elusive Higgs boson.

Carroll’s The Particle at the End of the Universe (OneWorld Publications) was announced as the winner of the 2013 Royal Society Winton Prize for Science Books last night at the Royal Society in London.

The £25,000 prize was awarded by Sir Paul Nurse, Nobel Prize-winning President of the Royal Society, with comedian and TV presenter Dara Ó Briain hosting the event. Speaking after winning the prize, Carroll said, “I feel enormous gratitude towards the thousands of physicists at the Large Hadron Collider and the millions of people who express their love for science everyday!”

This is a timely win for Caroll, with the discovery of the Higgs Boson in 2012 and last month’s Nobel Prize for Physics awarded to Peter Higgs and François Englert for their theoretical prediction of the Higgs boson. The Science Museum is also telling the story of the world’s greatest experiment and the hunt for the Higgs boson in a new exhibition, Collider.

Peter Higgs and Stephen Hawking in the Collider exhibition.

Peter Higgs and Stephen Hawking in the Collider exhibition.

Judges for the 2013 Royal Society Winton Prize for Science Books included impressionist Jon Culshaw, novelist Joanne Harris, journalist Lucy Siegle and Dr Emily Flashman, Royal Society Dorothy Hodgkin Fellow at University of Oxford.

The panel was chaired by Professor Uta Frith DBE FBA FRS, Emeritus Professor of Cognitive Development at University College London, who described the book as “an exceptional example of the genre and a real rock star of a book.” Frith went on to explain, “Though it’s a topic that has been tackled many times before, Carroll writes with an energy that propels readers along and fills them with his own passion. There’s no doubt that this is an important, enduring piece of literature.”

Carroll’s telling of ‘the greatest science story of our time saw off strong competition from a riveting shortlist of authors:

  • Bird Sense by Tim Birkhead, published by Bloomsbury
  • The Particle at the End of the Universe by Sean Carroll, published by OneWorld Publications
  • Cells to Civilizations by Enrico Coen, published by Princeton University Press
  • Pieces of Light by Charles Fernyhough, published by Profile Books
  • The Book of Barely Imagined Beings by Caspar Henderson, published by Granta
  • Ocean of Life by Callum Roberts, published by Allen Lane (Penguin Books)

If you would like to read more of these books, the Royal Society have published the first chapter of each book here.

Now in its 25th year, the book prize is sponsored by investment management company Winton Capital Management (supporters of our Collider exhibition). David Harding, Founder and Chairman of Winton Capital Management commented, “Sean Carroll’s book is a fascinating account of an inspiring scientific experiment that has brought thousands of people from different countries together to pursue knowledge in a collective way.”

The last particle?

Could the Higgs be the end of particle physics? We’re still a long way from answering one of the biggest questions of all, says Dr Harry Cliff, Head of Content on our Collider exhibition.

The 2013 Nobel Prize in Physics has been awarded to François Englert and Peter Higgs for their work that explains why subatomic particles have mass. They predicted the existence of the Higgs boson, a fundamental particle, which was confirmed last year by experiments conducted at CERN’s Large Hadron Collider.

But today’s celebrations mask a growing anxiety among physicists. The discovery of the Higgs boson is an undoubted triumph, but many note that it hasn’t brought us any closer to answering some of the most troubling problems in fundamental science.

A senior physicist went so far as to tell me that he was “totally unexcited by the discovery of the Higgs boson”. Though not the typical reaction, this discovery threatens to close a chapter of 20th century physics without a hint of how to start writing the next page.

Until July last year, when physicists at the Large Hadron Collider (LHC) announced its discovery, the Higgs boson remained the last missing piece of the Standard Model of particle physics, a theory that describes all the particles that make up the world we live in with stunning accuracy. The Standard Model has passed every experimental test thrown at it with flying colours, and yet has some rather embarrassing holes.

According to astronomical measurements, the matter described by the Standard Model that makes up the stars, planets and ultimately us, only accounts for a tiny fraction of the universe. We appear to be a thin layer of froth, floating on top of an invisible ocean of dark matter and dark energy, about which we know almost nothing.

Worse still, according to the Standard Model, we shouldn’t exist at all. The theory predicts that, after the Big Bang, equal quantities of matter and antimatter should have obliterated each other, leaving an empty universe.

Both of these are good scientific reasons to doubt that the Standard Model is the end of the story when it comes to the laws of physics. But there is another, aesthetic principle that has led many physicists to doubt its completeness – the principle of “naturalness”.

The Standard Model is regarded as a highly “unnatural” theory. Aside from having a large number of different particles and forces, many of which seem surplus to requirement, it is also very precariously balanced. If you change any of the 20+ numbers that have to be put into the theory even a little, you rapidly find yourself living in a universe without atoms. This spooky fine-tuning worries many physicists, leaving the universe looking as though it has been set up in just the right way for life to exist.

The Higgs’s boson provides us with one of the worst cases of unnatural fine-tuning. A surprising discovery of the 20th century was the realisation that empty space is far from empty. The vacuum is, in fact, a broiling soup of invisible “virtual” particles, constantly popping in and out of existence.

The conventional wisdom states that as the Higgs boson passes through the vacuum it interacts with this soup of virtual particles and this interaction drives its mass to an absolutely enormous value – potentially up to a hundred million billion times larger than the one measured at the LHC.

Theorists have attempted to tame the unruly Higgs mass by proposing extensions of the Standard Model. The most popular of which is “supersymmetry”, which introduces a heavier super-particle or “sparticle” for every particle in the Standard Model. These sparticles cancel out the effect of the virtual particles in the vacuum, reducing the Higgs mass to a reasonable value and eliminating the need for any unpleasant fine-tuning.

Supersymmetry has other features that have made it popular with physicists. Perhaps its best selling point is that one of these sparticles provides a neat explanation for the mysterious dark matter that makes up about a quarter of the universe.

Although discovering the Higgs boson may have been put forward as the main reason for building the 27km Large Hadron Collider (LHC), what most physicists have really been waiting for is a sign of something new. As Higgs himself said shortly after the discovery last year, “[The Higgs boson] is not the most interesting thing that the LHC is looking for”.

So far however, the LHC has turned up nothing.

If supersymmetry is really responsible for keeping the Higgs boson’s mass low, then sparticles should show up at energies not much higher than where the LHC found the Higgs. The fact that nothing has been found has already ruled out many popular forms of supersymmetry.

This has led some theorists to abandon naturalness altogether. One relatively new idea known as “split-supersymmetry” accepts fine-tuning in the Higgs mass, but keeps the other nice features of supersymmetry, like a dark matter particle.

This may sound like a technical difference, but the implications for the nature of our universe are profound. The argument is that we live in a fine-tuned universe because it happens to be one among an effectively infinite number of different universes, each with different laws of physics. The constants of nature are what they are because if they were different atoms could not form, and hence we wouldn’t be around to wonder about them.

This anthropic argument is in part motivated by developments in string theory, a potential “theory of everything”, for which there are a vast number (roughly 10500) different possible universes with different laws of physics. (This huge number of universes is often used as a criticism of string theory, sometimes derided as a “theory of everything else” as no one has so far found a solution that corresponds to the universe we live in.) However, if split-supersymmetry is right, the lack of new physics at the LHC could be indirect evidence for the existence of the very multiverse anticipated by string theory.

All of this could be rather bad news for the LHC. If the battle for naturalness is lost, then there is no reason why new particles must appear in the next few years. Some physicists are campaigning for an even larger collider, four times longer and seven times more powerful than the LHC.

This monster collider could be used to settle the question once and for all, but it’s hard to imagine that such a machine will get the go ahead, especially if the LHC fails to find anything beyond the Higgs.

We are at a critical juncture in particle physics. Perhaps after it restarts the LHC in 2015, it will uncover new particles, naturalness will survive and particle physicists will stay in business. There are reasons to be optimistic. After all, we know that there must be something new that explains dark matter, and there remains a good chance that the LHC will find it.

But perhaps, just perhaps, the LHC will find nothing. The Higgs boson could be particle physics’ swansong, the last particle of the accelerator age. Though a worrying possibility for experimentalists, such a result could lead to a profound shift in our understanding of the universe, and our place in it.

Discover more about the Higgs boson and the world’s largest science experiment in our new exhibition, Collider, opening on 13th November 2013.

This article first appeared on The Conversation.

LHC. Camera. Action! (Part 2)

Dr. Harry Cliff, a Physicist working on the LHCb experiment and the first Science Museum Fellow of Modern Science, writes about his recent filming trip to CERN for Collider, a new Science Museum exhibition opening in November 2013. The first part can be read here

Day 2, Thursday

On the first day of the Collider exhibition team’s visit to CERN we had explored the architecture and interiors of the town-sized laboratory. Now it was time to enter its beating heart: the gigantic experiments probing the fundamental laws of the universe, and the people who make them a reality.

Our team now divided. Pippa, Finn and crew set off to the far side of the 27km LHC ring to Point 5, home of the enormous Compact Muon Solenoid (CMS) experiment. 100 metres underground, 25 metres long, 15 metres high, weighing in at 12,500 tonnes and containing enough iron to build two Eiffel Towers, CMS is one of the four huge detectors that record the particle collisions produced by the Large Hadron Collider. It is also a remarkable sight, beautiful even, its concentric layers giving it the appearance of a gigantic cybernetic eye. One member of the team said it was the most incredible thing he had ever seen, with only the Pantheon in Rome coming close to matching it.

The enormous Compact Muon Solenoid (CMS) experiment. Credit: CERN.

The enormous Compact Muon Solenoid (CMS) experiment. Credit: CERN.

CMS was photographed from every angle so that it can be recreated in a 360 immersive projection for the Collider exhibition. The CMS team were incredibly accommodating in allowing us to get our cameras as close to CMS as possible, all while they carried out vital work on the detector. We owe particular thanks to the boundlessly energetic Michael Hoch who looked after us for the day and made it all possible.

Meanwhile, 13km around the ring, in a less spectacular CERN office, our radio producer and I carried out audio interviews of LHC physicists and engineers. Each of them sharing what makes them tick as scientists and inventors. One even surprised us by dismissing the discovery of the Higgs boson as “boring”; what drives him as a scientist is seeking answers to new questions. For him the Higgs threatens to be a dead-end on the journey of discovery, rather than opening up new avenues of inquiry. Over the course of the day we interviewed five members of CERN’s international community, drawn from across Europe, representing a diverse cross section of CERN’s most important asset, its people.

Day 3, Friday

The last day might have been the most challenging. The team assembled at CERN’s custom-built TV studio to film interviews with LHC engineers against a green screen. These are the people who build and operate CERN’s experiments and they will appear as full-body projections in the exhibition, as if museum visitors have wandered into the LHC tunnel to be met by a friendly member of staff. Over dinner the night before we had shared anxieties as to how it might go. Video, unlike audio, can’t be edited to remove fumbled words or long pauses – our interviewees would have to deliver near-perfect speeches, and none of them had ever done anything like this before. In fact, neither had any of us.

Our concerns were unfounded. The engineers were naturals and by the end of the day we had recorded some brilliant interviews that should really help bring CERN to life for the visitors to the exhibition.

We returned to London that evening, exhausted but carrying a huge amount of material, covering almost every aspect of the Large Hadron Collider. For the first time I really have a sense of what this Collider exhibition will become; it’s going to be quite something to see it take shape over the next five months. If you can’t make it to Geneva to see the LHC in person, you’ll find a healthy slice of the world’s greatest experiment at South Kensington this November. 

A Higgs boson is produced in the ATLAS detector

The boring boson?

Last week scientists working on the Large Hadron Collider in Geneva updated their colleagues on the newly-discovered Higgs boson. They revealed what they now know about the particle – and so far, it is behaving exactly as they expected. While this might seem like good news, for some people it is the opposite, because a well-behaved Higgs might rule out some intriguing new physics theories.

A Higgs boson is produced in the ATLAS detector

A Higgs boson is produced in the ATLAS detector

The Higgs – the particle which explains why others have mass – is incredibly unstable and only exists for a fraction of a second before decaying into other, more common particles. Any information about it comes second-hand from these other particles, and working out the properties is rather like putting together clues in a Sherlock Holmes tale, only with more mathematics.

Finding the Higgs in July was a wonderful coup for the LHC, but there now follows years of painstaking work to determine its precise properties. If the Higgs behaves even a smidgen differently from predictions, then it might point scientists in the direction of a new theory.

One particularly popular idea has the rather grand name of “supersymmetry”, which as we wrote on this blog last week, is looking less likely to be true.

There are lots of problems with current theories about the Universe – they don’t explain dark matter, and particle physics is completely incompatible with Einstein’s theories of gravity. Supersymmetry solves some of these issues in a whizz of complicated mathematics, but requires the existence of a whole family of new particles. If they exist, the Higgs’ properties should reveal them.

The results announced on Wednseday in Japan don’t lend the under-fire supersymmetry any more support. They suggest that so far, the Higgs behaves just as our current theory predicts it should. Specifically, when it decays, it turns into different types of particles at the rates we expect.

To some in the community, the Higgs’ conformity is rather disappointing.  But not all of the analysis was ready for the Japan conference and there is still uncertainty around the results that were announced, and supersymmetry still could work.

Even though the LHC has already analysed more data in two years than its predecessor managed in twenty, the measurements are not yet particularly precise, and the Higgs may still harbour surprises. The LHC still has not detected a Higgs decaying into quarks (the smallest unit of matter), for example – we just know that since we haven’t seen it yet, it can’t happen often. In other words: watch this space.

Visitors to the Science Museum will have a chance to get up close and personal with the LHC at a new exhibition opening in November 2013.