Tag Archives: kids

Opening the doors for Early Birds

Kate Mulcahy in the Learning team blogs on our Early Bird sessions in the Museum.

Museums are my favourite place to visit. I love to see interesting objects from history and to learn new facts, and I love the buzz of other people enjoying the Museum too. But for some of our visitors this isn’t so easy, and it was for this reason the Science Museum launched Early Birds.

A few times a year we open the museum from 08.30 in the morning for Early Birds, a free event for children who have an Autistic Spectrum Condition (ASC) and their families. This gives families a chance to look around our galleries and take part in fun activities before the Museum opens at 10am. We even keep some galleries closed a little longer, just for our Early Birds visitors.

Visitors at Early Birds

Visitors at Early Birds

For people with an autistic spectrum condition, it can be difficult to be in a busy environment or even waiting in a queue. They can be particularly sensitive to light or sound which can make being near some of our interactive exhibits unpleasant. All of these factors can make it difficult for children who are on the autistic spectrum to visit the museum during our usual opening hours.

For Early Birds, we wanted to create an environment where families would feel safe, happy and could still enjoy visiting the museum. This might mean turning off the sound on some of our louder exhibits or simply creating a nice sensory space where families can go and chill out if they want a break. We also created a Visual Story for families to help prepare for what they might see in the museum.

We have already run a few Early Birds sessions (one family has written about their experience here) and the team are busy organising our next session on 30th November and more dates in 2014. If you would like to take part in Early Birds, there are more details here.

Steampunk in the Science Museum

Our summer spectacular, The Energy Show, is staged in a steampunk world which blends the past and the future. Much inspiration for the show was taken from the Science Museum’s collection, especially the machines of The Energy Hall. Ben Russell, Curator of Mechanical Engineering, talks here about some of our ‘steampunk’ objects in the Museum. 

Beam engine by Benjamin Hick, 1840. Inv 1935-513

Beam engine by Benjamin Hick, 1840. Photo: Science Museum / SSPL

Photo: Science Museum / SSPL

Modern technology values function over anything else. Things are stripped down and smooth in appearance. Steampunk is a welcome kickback against this minimalist modern world we live in, reasserting the importance of form against function – and we can find this delicate balancing act played out in our collections.

Take this beam engine, for example. It’s a model of a full-size engine built in 1840 by Benjamin Hick of Bolton for a Leeds flax mill. It was an immense building, possibly the largest single room in the world. To animate the machines inside, Hick’s engine was certainly powerful, but in building it he gave full reign to his imagination. The result was  an Egyptian engine: It has columns with papyrus-headed capitals, a mighty entablature inspired by a temple overlooking the River Nile, and the ‘chronometric’ governor to control the engine’s speed takes the form of a scarab beetle.

Photo: Science Museum / SSPL

Photo: Science Museum / SSPL

Later Victorian design became rather bulbous, even grotesque, in appearance. But Hick’s engine is a sinuous masterpiece of epic design and brute strength. It reminds us not only of our creative debt to bewhiskered, roaring, big-jawed machine-makers like Hick, but also the significance of amazing nineteenth century machines, not just as a means to the end of production, but as symbolising national affluence and virility. In our present situation, it’s a lesson worth remembering: if you mean business, build machines that shout it out to the world.

Cooke and Wheatstone two-needle telegraph, 1851, Inv 1884-95

Photo: Science Museum / SSPL

Photo: Science Museum / SSPL

A recurring theme in Steampunk is the application of nineteenth-century design ideas to modern digital technology: laptops, PCs, even memory sticks can be made antique with brass gearwheels, dials and mahogany cases.

Colliding state of the art technology with the Gothic isn’t just a recent thing, though. In 1837, William Cooke and Charles Wheatstone patented the world’s first successful telegraph system. It was mainly used on Britain’s evolving railway system, conveying messages via wires running alongside the tracks. A slightly lesser-known use of this pioneering system was to convey messages and reports across London, from the Houses of Parliament at Westminster to clubs in St James’s.

The Electric Telegraph Company was formed in 1846 and this instrument was installed at the Houses of Parliament in 1851. As a ‘black box’ of purely functional appearance, it would have jarred badly against the Gothic Revival style adopted in the newly rebuilt Palace of Westminster. So, the telegraph was fitted with its admirable Gothic casing, complete with pointed arch, finial, and delicately-realised columns. It must surely have lent a feeling of permanence and robustness to the room that it graced, reflecting the standing of Parliament – and also pre-empting one of the major pillars of steampunk.

Model of the side-lever engines of the Paddle Ship ‘Dee’, 1832. Inv 1900-41

Photo: Science Museum / SSPL

Photo: Science Museum / SSPL

The problem with modern technology is that so much of it is intangible, digital, virtual, ephemeral. This point of view certainly underpins many Steampunk projects.

It wasn’t always like this, of course: introducing steam power to ships during the nineteenth was the cutting edge of serious heavy metal technology, and was a highly demanding field to design machines for: engines couldn’t be too heavy, they had to have a low centre of gravity, they couldn’t take up too much space.

These prerequisites offered valuable motivation to innovate in engineering design styles. Rather than big, heavy, monolithic construction and great slab-sided machines, engineers evolved lighter cast-iron structures, with lots of space, openings, and details which could be embellished without adding too much weight. Gothic engines? Check.

This model was built in 1832 for the Paddle Ship ‘Dee’ by the London company Maudslay, Sons and Field. Maudslay was a prolific model-maker, trying out new ideas before committing to them full-size, and this model is one of the finest surviving. The delicate cast iron Gothic tracery of its framing would not look out of place in a cathedral – a very tangible record of the creative impulses afforded to engineering, and perhaps inspiration for those Steampunkers looking for something a little out of the ordinary.

Take a look at our own Steampunk set Science Museum Live: The Energy Show which runs until 31 August. Book tickets and find more information here.

How we created ‘i-nstein’, the animated character in The Energy Show

One of the main characters in The Energy Show is lab assistant i-nstein. Nina Dunn, responsible for Video Design and Animation Direction, and Mike Wyatt from Attack Animation were the masterminds behind bringing i-nstein to life. Take a look at their process here.

Design:
We started off with a few rough pencil sketches. Then some orthographic representations of the sketches were created in Photoshop. Extra detail was added into the basic form to add interest.

1

3D Model:
Using a 3D computer program such as ‘Maya’, the orthographic illustrations are used as reference to build i-nstein as a 3D polygonal model. The pink dots in the middle image are the vertices of the model. A ‘vertex’ is a point in 3D space. The blue lines are the ‘edges’ of the polygons, they are drawn between two vertices. A ‘face’ can be rendered between at least three vertices.  It is best to use 4 vertices for each face, so the polygon which is drawn has 4 vertices and 4 edges draw between these vertices. We call these polygons ‘quads.’

2

Rigging:
The next stage is called ‘rigging.’ This is where the puppet strings are built into the geometric model. The individual elements such as the eyebrows, the moustache, and the goggles are ‘skinned’ to curves and joints, before being placed under the influence of ‘controller curves.’ It is then possible to ‘pose’ each element of the model, and to achieve different emotions in the way in which each controller is positioned.

4

Texturing:
The ‘texturing’ process is where we add colour and shading to the model.  The geometry is ‘mapped’, as if you were skinning an animal, so that the surface is laid out on a flat, 2D image. This is called ‘UV Mapping’. Using Photoshop, colour information can be painted onto these flat images, which the computer then wraps back around the model.

Texturing

Animation:
i-nstein is animated by posing him in different positions over time. The animator sets ‘keys’ on the time-line, and the computer fills in the spaces between the key frames. Once the animation is complete, a low quality ‘playblast’ movie is created so that the director can sign off the animation before the character is lit and rendered.

Animation

Lighting:
Once the animation of a shot is complete, the model is replaced with a higher resolution ‘mesh.’ This Mesh has a much higher ‘poly-count’ than the low quality ‘proxy mesh’ used for animation. The more polygons the software has to display, the slower the feedback, so this is why make the substitution at this stage. Once the lighter is happy with the general mood and look of this view a render can be made.

6

Rendering:
A ‘render’ is a high quality, full resolution image of a particular frame of the animation. It brings all of the underlying elements together and outputs them as one single file. It can take a very long time for the computer to calculate. It took 60 seconds per frame to render i-nstein. There are 25 frames per second. To render 1 second of animation took 25 minutes. We produced about 9 minutes of animation, which took 225 hours to render. That’s almost 9 and a half days of rendering!

7

i-nstein is starring in Science Museum Live: The Energy Show at the Science Museum until 31 August. Read more information and book tickets here. 

Visitor Drawings – What’s your favourite science joke?

What’s your favourite science joke? Does it involve chemical symbols or scientific equipment? These are just some ‘Funnies’ that of our comedic visitors have come up with whilst in the Launchpad gallery. Click on any image for larger pictures.

Enjoy Christmas all year round with a Christmas tent

Visitor Inventions – What they really wanted for Christmas

“Wow! It’s what I always wanted….” is the standard response when you receive presents from your friends and family.  But was it really?  Whether you received the latest gadget, perfume or socks – some of our visitors dream of receiving jetpack boots, a time machine and a walking toilet.

Below is a selection of inventions that our visitors came up with when in the Launchpad gallery.  Click on any image for larger pictures.

Explainer Fact:  The Museum is only closed 3 days a year – 24th-26th December

Flower from Taiwan loves the Museum

Visitor Drawings – Love for Science

Eric Schmidt, Google’s Executive Chairman, recently visited the Museum to give a presentation on the importance of science museums and their role in inspiring the next generation.

From the number of drawings we receive from our visitors expressing their love for science (and the Museum itself), we must be doing something right!

Here’s a selection of science-loving drawings created by our visitors when in the Launchpad gallery. Click on any image to see bigger pictures.

Explainer Fact: Web Lab (beta), a series of Chrome Experiements by Google, is now open to the public in the Basement of the Museum.