Tag Archives: science museum

Cosmonaut Alexei Leonov at the Science Museum for the announcement of the forthcoming exhibition Cosmonauts: Birth of the Space Age

Space pioneer Alexei Leonov heralds Cosmonauts Exhibition

By Pete Dickinson, Head of Communication, Science Museum

Half a century after he risked his life to become the first person to go on a spacewalk, Cosmonaut Alexei Leonov today joined Science Museum Director Ian Blatchford to announce the museum’s most ambitious temporary exhibition to date, Cosmonauts: Birth of the Space Age, supported by BP.

Cosmonaut Alexei Leonov at the Science Museum for the announcement of the forthcoming exhibition Cosmonauts: Birth of the Space Age © Science Museum

Cosmonaut Alexei Leonov at the Science Museum for the announcement of the forthcoming exhibition Cosmonauts: Birth of the Space Age © Science Museum

Tickets are now on sale for the exhibition, which opens on 18 September 2015 and will feature the greatest collection of Soviet spacecraft and artefacts ever assembled in once place, including eight that had to be declassified for this project, to provide a vivid insight into how the Soviet Union kick-started the space age.

Speaking at a news conference this morning at the Science Museum, Leonov told journalists he was convinced the Soviets could also have beaten the U.S. to the first manned orbit of the moon but for the conservatism of those running their highly secretive moon programme following the death in 1966 of Sergei Korolev, the lead rocket engineer and spacecraft designer on the Russian Space Programme.


Leonov told the audience that he and Yuri Gagarin argued for pressing ahead with the manned orbit but were overruled: “Both Yuri and myself went to the Politburo and asked that we go ahead. But our bureaucrats said it was too risky so let us try a sixth (unmanned) probe. And of course it landed a few hundred metres from where it was supposed to….so unfortunately it didn’t work out for me.”

Lunnyi Korabl (Luna Lander), 1969, at the Moscow Aviation Institute, (engineering model) c. The Moscow Aviation Institute/ Photo: State Museum and Exhibition Center ROSIZO

Lunnyi Korabl (Luna Lander), 1969, at the Moscow Aviation Institute, (engineering model) c. The Moscow Aviation Institute/ Photo: State Museum and Exhibition Center ROSIZO

Cosmonauts: Birth of the Space Age will include the monumental five metre tall LK-3 lunar lander that Leonov trained on in Star City. Designed to take a single cosmonaut to the moon, three Soviet lunar landers were tested successfully in space although none ever touched down on the surface of the moon.

Ian Blatchford spoke of the honour of having Alexei Leonov alongside him (see Leonov’s dramatic account of his battle to reenter the spacecraft here) as he announced the “most audacious and complex exhibition in the history of the Science Museum and indeed one of the most ambitious projects ever presented by any great museum”.

He then invited journalists to see the first of 150 objects to arrive from Russia -  including Vostok-6, the capsule that carried Valentina Tereshkova, the first woman to travel into space, and safely returned her to Earth in 1963.

Cosmonaut Alexei Leonov and Science Museum Director Ian Blatchford speak at the announcement of Cosmonauts: Birth of the Space Age © Science Museum

Cosmonaut Alexei Leonov and Science Museum Director Ian Blatchford speak at the announcement of Cosmonauts: Birth of the Space Age © Science Museum

The Science Museum Director described how the exhibition will explore a critical moment in the history of humankind, when people first set forth beyond the confines of their home world: “the Russian space programme is one of the great cultural, scientific and engineering achievements of the 20th century.”

Cosmonauts, which has drawn on the help and support of the first generation of Soviet space pioneers, will explore the science and technology of Russian space travel in its cultural and spiritual context, revealing a deep-rooted national yearning for space that was shaped by the turbulent early decades of the 20th century. The exhibition will feature rocket pioneer Konstantin Tsiolkovsky’s extraordinary 1933 drawings of space flight, depicting spacewalks, weightlessness and life in orbit almost thirty years before it became a reality.

Ian Blatchford also thanked all the cosmonauts, partners and funders who have made this exhibition possible. Cosmonauts represents a major collaboration between the Science Museum, the State Museum Exhibition Centre ROSIZO, the Memorial Museum of Cosmonautics and the Federal Space Agency, Roscosmos. The support of many other institutions and individuals in the UK and Russia has also been crucial in the development of the exhibition.

The exhibition opens on 18 September 2015 and will run until 13 March 2016 at the Science Museum in London. The Museum will be open until 10pm every Friday evening during this period to allow visitors more opportunities to see the exhibition.

Cosmonauts: Birth of the Space Age has had additional support from ART RUSSE (Major Funder) and the Blavatnik Family Foundation.

A new vision: the influence of early scientific photography

With a major new exhibition at the Museum exploring the fertile ground in photography where science and art meet, Co-curator of Revelations: Experiments in Photography Dr Ben Burbridge looks at how scientific endeavour has had a profound effect on the visual languages of art.

The new Media Space exhibition, Revelations: Experiments in Photography, tells the story of artists’ changing engagement with early scientific photography, tracking a path through modern, postmodern and contemporary photographic art.

The first room of the exhibition, entitled ‘Once Invisible’, draws on the rich holdings of the National Photography Collection and the Science Museum collections to explore how early scientific photographs expanded the field of vision during the nineteenth and early twentieth centuries.

'Once Invisible', Revelations: Experiments in Photography at Media Space, Science Museum © Kate Elliott

‘Once Invisible’, Revelations: Experiments in Photography at Media Space, Science Museum © Kate Elliott

These photographs show the astronomically distant and microscopically small, reveal the nuances of rapid motion, and record the presence of invisible energy sources such as radiation and electricity.
After installing this part of the exhibition, it struck us once again how truly strange these images still seem, and quite how alien the world can appear within them.

Highlights include William Henry Fox Talbot’s exquisite photomicrographs, Arthur Worthington’s innovative use of flash to study the forms produced by splashes, Henri Becquerel’s photographs demonstrating the radioactivity of uranium salts, which border on abstraction and photographs by Étienne Jules Marey.

“Unlike Eadweard Muybridge, who had no interest in science, Étienne Jules Marey was a qualified doctor and there would have been no Italian Futurist movement without his extraordinary influence. Marey’s representation of locomotion and the movement of animals and human beings is wonderfully exhibited here – perhaps for the first time publicly. There are very few exhibitions where you can see his genius.” – Sir Jonathan Miller, speaking at the opening event for Revelations: Experiments in Photography

The pictures can be understood as both product and emblem of an extraordinary moment when new technologies changed experiences of the world in fundamental ways. They are best understood in relation to a wider technological landscape, which included the development of telegraphy, telephony and inter-continental rail travel.

The second room is entitled ‘The New Vision’. Here, visitors are presented with art photography made during a period spanning from the early twentieth century to 1979. It provides a rare opportunity to see iconic and lesser known works informed and inspired by the types of scientific imagery presented in Room 1.

The New Vision, Revelations: Experiments in Photography at Media Space, Science Museum © Kate Elliott

‘The New Vision’, Revelations: Experiments in Photography at Media Space, Science Museum © Kate Elliott

Drawing on numerous loans from museums in the USA and Europe, ‘The New Vision’ includes work by László Moholy-Nagy, Man Ray, Laure Albin-Guillot, Carl Strüwe, Alfred Erhardt, György Kepes, Harold Edgerton, Berenice Abbott and Hollis Frampton. Seeing these important works come out of shipping crates and onto the walls was a memorable experience.

Many of these artists were drawn to scientific photographs based on the formal principles they suggested, particularly the radically abstract language they made available. For some, the photographs were also symbols of broader changes to culture and society: in the scientific photographs, technology helped to reveal and record things that could not be seen by the naked eye. The abilities of man were surpassed by those of machines.

‘The New Vision’ maps a course through twentieth century art, revealing a gradual shift in the meaning of science and technology. Painted in crude terms, it signals those ways in which an initial enthusiasm gave way to pessimism and uncertainty during the period after the Second World War.

Entitled ‘After the Future’, the final room focuses on the resurgence of interest in the revelations of early scientific photography within areas of art photography today. It includes works by Walead Beshty, Ori Gersht, Sharon Harper, Joris Jansen, Idris Khan, Trevor Paglen, Sarah Pickering, Clare Strand and Hiroshi Sugimoto.

After the Future, Revelations: Experiments in Photography at Media Space, Science Museum © Kate Elliott

‘After the Future’, Revelations: Experiments in Photography at Media Space, Science Museum © Kate Elliott

By setting the contemporary work apart from that of the modernist artists in Room 2, we highlight the gap that separates our own moment from theirs, and the fact that the earlier photographic experiments no longer represent the vanguard of visual culture.

The exhibition thus concludes by posing a series of questions: If the early scientific photographs no longer symbolise the new, what do they mean for artists working today? And what should we make of the widespread interest in the earlier forms and techniques evident in the work of so many contemporary practitioners?

In reply, we point to the wider contexts that may have informed this ‘scientific turn’, particularly the rapid expansion of networked digital technologies, and the profound changes to photography and culture this has involved.

By reflecting on artists’ glance back to photography’s past, we hope to gauge something important about photography’s present.

Revelations: Experiments in Photography is at Media Space until 13 September 2015. Click here to book tickets. An accompanying book edited by Ben Burbridge, entitled Revelations and co-published with MACK, is available to buy online from the Science Museum Shop. The exhibition transfer to the National Media Museum, Bradford where it will run from 19 November 2015 to 7 February 2016.

Access All Areas: Family Events for Visually Impaired Visitors

Lucy Minshall- Pearson and Adam Boal from our Special Events Team write about developing a new series of events for families with children who are visually impaired.

In the Special Events Team we write, develop and present a large programme of events for families during school holidays and weekends. Our aim is to make the museum as accessible as possible. Part of this is running events like SIGNtific, where stories and workshops are presented in British Sign Language, and Early Birds, mornings where the museum opens early for families with children on the Autistic spectrum.

To build on the successes of our SIGNtific and Early Birds events, we wanted to improve visits for families with children who are visually impaired (VI). Having identified our target audience, we did as much research as we could about how to best tailor our events. We set out to talk to as many people as possible, sharing ideas, experiences, and best practice. We looked into how science is taught at schools for partially sighted and blind children, how organisations that work with partially sighted and blind children run workshops and activities, and we sought out the best events at other amazing museums and galleries. Suddenly every visit to an exhibition involved asking around ‘what activities do you do for families with visually impaired children?’, every visit to a website involved scouring their accessible events pages, every meeting with a fellow museum professional involved asking them about what they were doing for this audience.

Visitors enjoying our newly developed workshops

Visitors enjoying our newly developed workshops. Credit: Science Museum

Most of the programmes for blind and partially sighted people we found were aimed at adults not families. This made us redouble our efforts, and that’s when we met Barry Ginley, the Disability Access Manager from the V&A, and his lovely Guide Dog, Skye. He gave us training on working with people with visual impairments and information on the issues children with VI can face. He had us walk around the Museum blindfolded, an experience which helped us realise how much more aware we became of our surroundings; objects, people and the giant Rugby Tuning Coil all became potential hazards.

With the research done, the activities developed, and miniature tactile versions of Mars built we were finally ready and the date, 15 March was set, Mother’s day, a perfect day for family activities. The day included four events: a touch tour and audio described ‘Rocket Show’, a hands-on workshop called ‘Backpacking to Mars’, a touch table of Information Age gallery objects, and a tour of the Information Age gallery.

Visitors enjoying our newly developed workshops

Visitors enjoying our newly developed workshops
Credit: Science Museum

Did the families enjoy it? Would further events like this be welcome at the Science Museum? It is a resounding yes for both. The feedback we received was extremely positive which made all of the hard work worth it. If you are interested in attending one of our future events for families with blind and visually impaired children, please drop us an email at familyprogrammes@sciencemuseum.ac.uk saying you’d like to be added to our ‘VI mailing list’.

The Special Events Team will be running a programme of events for families over the Easter holiday.  We’re also staying open until 19.00 (last entry 18.15) every day during the Easter holiday, from 28 March 2015 – 12 April 2015, although our interactive galleries will be closing at 18.00. 

Go on Punk, make my day!

Jon Milton from our Punk Science team writes about a new era for Punk Science.

Just like when you buy a pack of chewing gum and only have a £20 note, change is inevitable. And change has lifted its fickle finger and pointed at Punk Science. For those of you who are new to Punk Science may I suggest using the excellent search engine Google to familiarise yourself with our oeuvre. Or, if you can’t be bothered doing that, here’s a potted history. Punk Science is the world’s first museum based science comedy team. We started back in 2004 featuring the talents of Rufus Hound, Kat Nilsson, Brad Gross, Ben Samuels and myself. The line-up has changed over the years as has the format from more of a stand-up style, to a hybrid of stand up and the excellent science shows performed by the Science Museum’s brilliant Learning team.

But now, a new era is about to begin in Punk Science. With the immensely talented Dan Hope leaving to pursue his acting career we were faced with the unique challenge of finding someone who is both quite good at science communication and can be quite amusing at the same time. After an arduous selection process involving an assault course, a baking contest and a spelling test, it was Science Museum Explainer and comedian Sam Furniss who served up a particularly good millefeuille accompanied by an ability to spell millefeuille that lead to his selection.

What can you expect to see in the new era of Punk Science?

Punk Science: The Gameshow

Punk Science: The Gameshow

Some of the same stuff people liked from our extensive back catalogue along with the new game show featuring at Lates on the last Wednesday of every month. This is a new style of science show taking the conventional demonstrations based format and combining it with the competitive elements of a TV game show. The idea is to attract an adult audience who wouldn’t normally go to a science themed event by using main stream entertainment techniques. It’s the next generation of “The Generation Game”. For those of you, who aren’t familiar with “The Generation Game”, add it to the list of things to Google.

Punk Science: The audience

Punk Science: The audience

Tickets are available for the all new Punk Science: The Game Show via the Science Museum website. You can also catch them at NerdNite London this month, and next month at NerdNite Brighton as part of the Brighton Science Festival, as well as at The Angel Comedy Club.  Follow them on Twitter for updates and science-based comedy interjections.

Their children’s book “The Intergalactic Supermassive Space Book” is available via the Science Museum shop and at other good retailers.

Download the free, new Lates app and gain access to exclusive special offers and information about Lates. Available on Android and iPhone.

A Day In the Life of an Explainer

A guest post by Sarah, one of the Science Museum’s Explainers. 

Hello again…I’m Sarah, one of the Explainers here at the Science Museum and I’m here to tell you about a day in my life as an Explainer. The first thing to say is that there is no such thing as a typical day!

You may have read my previous blog “Observations of a New Explainer” a couple of years ago. Since then I’ve learnt loads of new things and gained lots of new experiences, such as running our brand new Information Age workshop Code Builder (about basic computer programming) and performing the Feel the Force lecture theatre show to primary schools.

One particular highlight has been learning to present the brilliant Rocket Show, an interactive show aimed at Key Stage 3 children about Newton’s Laws of Motion, so I’ve chosen to tell you a bit more about one of the days when I perform this show.

I have to say that one of the most nerve-wracking things I’ve done since I’ve been here is learning the Rocket Show and presenting it to my very first audience of school kids. Handling a packed show space of 100 plus assorted teenagers, teachers and other visitors is both daunting and thrilling!

I’ve had audiences that have ranged from just a handful of visitors to those packed with very excited and unruly teenagers; enthusiastic holiday-time audiences (my favourite) to shows whereby the kids are so busy texting on their phones or scribbling down notes that they don’t respond!

I’ve learned it’s a real skill to be able to adjust your approach to engage different audiences and give them a memorable and exciting experience…..but that’s what we do!

P1010373 cropped

Explainer Sarah transferring hydrogen gas from a rubber bladder into a Pringles tube

“What goes into preparing for and delivering a Rocket Show?” you ask. Well, imagine I’ve just rushed up 4 floors to the Launchpad Showspace after an hour in the Garden gallery. After collecting some props, I rush back down four floors behind the scenes of the Science Museum to collect the essential ingredient that gives the Rocket Show its wow-factor…..Rocket fuel!

“What ….isn’t that highly dangerous stuff??”, I hear you cry.  Well, potentially yes, but we take safety extremely seriously. The fuel we use is hydrogen gas which is very flammable and is kept in cylinders outside. Rain or shine (quite often rain!) it’s collected in special rubber gas-bladders and carried (carefully) to Launchpad.

Some of the hydrogen gas is used to fill balloons for use in the show, but what happens to the rest? The rest is used for the amazing indoor rocket that demonstrates Newton’s 3rd Law of Motion (“for every action, there is an equal and opposite reaction”), where we attempt to launch a Pringles tube into Space…something that gets a response from even the teenagers!

So, together with setting fire to stuff and blowing stuff up, we dress up, ride on chairs with wheels and generally have a rocket-tastic time with the help of plenty of brave volunteers and the brilliance of Sir Isaac Newton.

Intrigued?? Why not visit and see a Rocket show!

Explainer Fact: We fire a thousand Pringle Rockets every year.

How Eddie Redmayne Mastered Stephen Hawking’s Voice

Roger Highfield, Director of External Affairs, writes about upcoming Stephen Hawking biopic The Theory of Everything.

Only one person is known to have used the voice synthesiser that now sits in the Cosmos and Culture gallery in the Science Museum: cosmologist Stephen Hawking, who describes the museum as ‘one of my favourite places’.

Voice synthesiser

Voice synthesiser, on display in Cosmos and Culture

Now a second person has mastered Hawking’s voice, that paradoxical blend of machine and personality: the actor Eddie Redmayne, who undergoes an extraordinary feat of transformation during The Theory of Everything (released on 1 January).

He depicts how Hawking changed from a lazy student into the world’s best known scientist who, as a result of motor neurone disease, has only the use of a few muscles.

Hawking caught pneumonia in 1985 and underwent a tracheotomy but regained the ability to ‘speak’ using a computer operated by a hand switch to painstakingly build up words, sentences and phrases so they could be read out by the voice synthesiser that is now in the museum.

Redmayne’s remarkable dedication to his craft can be seen in this biopic, which is based on the book Travelling to Infinity: My Life with Stephen by Hawking’s first wife Jane.

Redmayne describes it as “an incredibly delicate and intricate and quite complicated love story.” One of the most extraordinary dimensions of that story is Jane’s determination to stick with Hawking despite his diagnosis with motor neurone disease, an apparent death sentence, at the age of 21.

Stephen Hawking

Still from The Theory of Everything with Jane (Felicity Jones) and Stephen Hawking (Eddie Redmayne)

The film’s production design department took great pains to accurately recreate the progression of wheelchairs that Hawking used throughout his life, from regular to electric and then one adapted to include a computer and his voice synthesiser.

Redmayne had spent months studying archival material, from books to video; worked with the Motor Neurone Disease Association and a neurology clinic in University College London, meeting some 30 patients; rehearsed the change in his movements as the disease took hold with a dance teacher; and wore prosthetics to show how Hawking had aged and deformed with the disease, such as oversized ears that could, with oversized clothes, make his face look gaunt.

One of the pivotal scenes with Hawking’s first wife Jane (played by Felicity Jones) took 15 minutes during an intense day of filming using a hand switch to operate a replica of Hawking’s synthesiser system, he explained. Though only an edited version of his laborious original effort remains in the film, it speaks volumes about Redmayne’s attention to detail that he was prepared to go so far.

Hawking was so impressed with the film, said Redmayne, that he responded with a generous gift — allowing the filmmakers to swap the synthetic voice they had to create and replace it with his own, trademarked computerized version.

Trying to balance his science with his personal story presented some of the same challenges for the James Marsh, director of The Theory of Everything, as it did for curators three years ago, when the Science Museum put on an exhibition to celebrate Hawking’s 70th birthday.

While Stephen Hawking might be a celebrity, he is first and foremost a scientist and not only that but a theoretical physicist, one who deals with ideas rather than something tangible like technology. Redmayne admits that it was daunting getting the right balance between science and entertainment.

Still, the film shows how Hawking first captured the attention of his peers in the late 1960s, working with Roger Penrose (played by Christian McKay) on how the laws of physics – notably Einstein’s law of gravity – sometimes break down, resulting in something called a spacetime singularity. If general relativity was correct, they showed, then such singularities must occur inside black holes – and, most probably, at the start of the universe

This idea implies that singularities mark the beginning and end of space and time, which was created during the Big Bang and breaks down within black holes, where it is necessary to incorporate quantum theory – the theory of the very small – in order to understand what is really going on.

The film makes much of how Hawking was determined to find “a simple eloquent explanation” for the universe. One of Hawking’s long-standing goals has been to blend the theory of the very big (general relativity) with the very small (quantum theory) to produce an overarching theory known as quantum gravity.

As the film points out – with the help of its consultant, Jerome Gauntlett, former PhD student in Stephen’s group, who is now Head of the Theoretical Physics Group at Imperial College London –  Hawking moved on to a more radical formulation which incorporates some aspects of quantum theory, the no boundary idea, which says that the entire history of the universe, all of space and time, forms a kind of four-dimensional sphere. Thus speculation about the beginning or end of the universe is as meaningless as talking about the beginning or end of a sphere.

One strange consequence of quantum theory is that empty space isn’t empty at all: pairs of particles are constantly popping into and out of existence. If they appear on the event horizon – the point of no return from the gravity well of a black hole – they may find themselves on different sides, with one sucked in, and the other zooming free as “Hawking radiation.”

There’s a scene in the film showing when Hawking gets a sweater trapped halfway over his head and has an insight that leads to this discovery. “Hawking radiation is widely considered to be the single most important insight into quantum gravity that has been discovered so far,” says Gauntlett, who also helped to bring Redmayne up to speed with Hawking’s science.

The director James Marsh told me that he sees the movie as a human story first and foremost but he does hope, as does Gauntlett, that it will encourage those who are intrigued by the science to find out more. “To be honest, dramatic film is not the best place to explore theoretical physics” Marsh explained. “The idea was to make the science universally available and that meant simple. Better that than address a snobbish or elitist audience. Better that a 14 year old boy or girl watches the film and is intrigued to find out more.”

A Brief History of Time, on display in Cosmos and Culture

A Brief History of Time, on display in Cosmos and Culture

One way he used to lay out scientific thinking in lay terms was to allow the character of Jane to do some explaining, rather that Stephen himself. But, of course, Hawking himself has provided the most stellar example of how to bridge the gulf between the public and cosmologists with A Brief History of Time, which has sold more than 10 million copies worldwide. To celebrate this remarkable achievement, a copy can be found in the Cosmos and Culture gallery.

The Theory of Everything will be showing at the Science Museum IMAX from 1 January 2015. Book tickets here.

Science Museum IMAX plays host to Christopher Nolan and his Interstellar team

World-renowned director and blockbuster auteur Christopher Nolan visited the Science Museum last night for a special screening of his latest acclaimed feature, Interstellar, in our IMAX Theatre.

He was joined by the film’s editor Lee Smith, visual effects supervisor Paul Franklin and cinematographer Hoyte van Hoytema for an exclusive Q&A with BAFTA members hosted by writer and journalist Mark Salisbury.

Mark Salisbury, Christopher Nolan, Lee Smith, Paul Franklin and Hoyte van Hoytema at the Science Museum IMAX for a screening of Interstellar © Katherine Leedale

Mark Salisbury, Christopher Nolan, Lee Smith, Paul Franklin and Hoyte van Hoytema at the Science Museum IMAX for a screening of Interstellar © Katherine Leedale

The Science Museum IMAX is one of only four screens in the UK to show Interstellar in Nolan’s intended 70mm IMAX format, with one of the other three at our sister museum, Bradford’s National Media Museum. Presented in the highest quality resolution and combined with specially made IMAX sound, the experience is the most immersive presentation of Nolan’s most ambitious film to date.

On making his films a spectacular experience for audiences, Nolan has said: “IMAX is the gold standard and what any other technology has to match up to, but none have, in my opinion.”

Christopher Nolan during the making of Interstellar.

Christopher Nolan during the making of Interstellar.

Featuring an outstanding cast led by Oscar winner Matthew McConaughey, Interstellar draws on the scientific research of eminent physicist Kip Thorne whose theories centre here on traversable wormholes through space and time.

Screenings of Interstellar in IMAX 70mm continue at the Science Museum until Sunday 14 December. For tickets click here.

A Journey to Mars

A guest blog post from Nancy Williams, CaSE

Last Friday evening (14 November 2014), Dr Ellen Stofan, NASA’s Chief Scientist, gave the Campaign for Science and Engineering’s 24th Annual Distinguished Lecture (listen here). In front of a packed IMAX theatre at the Science Museum, Ellen took us through some of the extraordinary advances in science, technology and engineering resulting from exploration of space, and the challenges even now being worked on by scientists across the world driven by NASA’s journey to Mars.

Dr Ellen Stofan, NASA’s Chief Scientist, in front of the Apollo 10 Command Module. Credit: CaSE

Dr Ellen Stofan, NASA’s Chief Scientist, in front of the Apollo 10 Command Module. Credit: CaSE

One of the great unknowns for us here on Earth is whether we’re alone in the universe – NASA’s Journey to Mars mission is working to get closer to the answer. Why Mars? The obvious answer would be that it is our planetary neighbour but what makes it an exciting prospect in the search for life beyond earth – is water. Mars is marked all over with signs that water once persisted on the surface – the ragged surface on the red planet could be compared to some of the great geological masterpieces shaped by bodies of water over millennia here on Earth – and then in 2008 the Phoenix lander took a sample of ice.

How do we begin such a search? What next steps do we need to take?

Ellen began by highlighting the importance of international co-operation in order to achieve this grand goal of going to Mars. She outlined tremendous work already achieved through combined efforts – particularly noting the extraordinary Philae landing this month as well as the ongoing work through the International Space Station, saying that in her view such a collaboration is worthy of a Nobel Prize. Although they are extraordinary, exploration by rovers and landers is very slow and limited – having scientists on Mars would dramatically change the scope of exploration and the timescale of discoveries.

Dr Ellen Stofan, NASA’s Chief Scientist, talks at the Science Museum. Credit: CaSE

Dr Ellen Stofan, NASA’s Chief Scientist, talks at the Science Museum. Credit: CaSE

We heard of the science, engineering and technology challenges that NASA has mapped out and how they, along with international and commercial partners, are going about finding answers. Getting people safely landed on Mars (and back again!) is not possible, yet – but Ellen said she expects it to happen in the 2030s. To get there, the challenges range from how to safely land a heavy craft in a thin and changing atmosphere, and how to keep Mars clean from contamination by microorganisms from earth, to ensuring that astronauts not only survive the eight month journey and landing but are healthy and able to work once they arrive – for instance combatting the muscle wasting and bone density loss that usually occurs in microgravity.

Another challenge is making the mission as efficient as possible – mass affects everything. NASA astronauts are already able to recycle 80% of the water they use, but as Ellen said – don’t think about that for too long. Other challenges you might not think about straight away – such as making sure dust from Mars isn’t brought into the spacecraft. But when you think about it, at zero gravity dust could cause havoc! But perhaps the dust could be put to good use – with the developments in 3D printers a next step being investigated as part of the ‘in situ resource utilisation’ research is how to use Martian rock to manufacture spare parts, rather than having to transport powder manufactured on Earth.

In the post-lecture Q&A one of the questions was on the timescale of decisions on future missions and investments. This highlighted the disconnect between the short-term, politically driven timescales of public funding and the long-term nature of NASA projects – a challenge not unfamiliar to UK scientists.

And of course in order to achieve NASA’s mission to Mars, and meet the many other great challenges faced closer to home, we need young people with creativity and ambition to become the next generation scientists and engineers. Ellen was animated about importance of inspiring young people about science and certainly did her bit on Friday (I saw one little girl grinning ear to ear holding a shiny new NASA badge)!

It is hard to do justice to the inspirational talk given by Dr Stofan in the awesome IMAX theatre at the Science Museum, so I recommend listening to the audio recording of the lecture itself (here) and you will have to imagine it is accompanied by wonderful images that are 17m tall and literally out of this world.

How did tea and cake help start a computing revolution?

Today (17 November) marks the 63rd anniversary of the LEO 1 (Lyons Electronic Office 1) computer, the first computer to be used in the workplace. 

In 1950 if you fancied a cup of tea or a piece of cake you might have gone to a Lyons tea shop. J Lyons & Company ran tea shops across Britain. But the company was also interested in improving the way its work was managed and conducted, so it decided to build a computer that could support the collection and analysis of this information. Brought to life on 17 November 1951, LEO I played a crucial role in the development of a new computer age.


Working with the team at the University of Cambridge that had built the EDSAC computer in 1949, Lyons developed the LEO I, assembling it at the Lyons main factory building in West London. The computer ran its first program on 5 September 1951, valuing the cost of goods that came out of the bakeries.

Leo I electronic computer, c 1960s

Leo I electronic computer, c 1960s

The company LEO Computers Ltd was formed in 1954 and went on to build LEO II and LEO III. These were installed in many British offices including those of Ford, Customs and Excise, the Inland Revenue and the Post Office. The later models were exported as far as Australia and South Africa.

You can find out more about the LEO computer in our Information Age gallery, which looks at the last 200 years of how communications technology has transformed our lives.

The Science of Interstellar

Roger Highfield, Director of External Affairs at the Science Museum, explores the physics of Hollywood blockbuster Interstellar. Book tickets here to see Interstellar in full 70mm IMAX quality.

Black holes are thought to lie at the heart of most, possibly all, galaxies. So it should come as no surprise that a particularly striking black hole lurks at the heart of the galaxy of Hollywood stars—Matthew McConaughey, Anne Hathaway, Jessica Chastain, Michael Caine, Bill Irwin, Casey Affleck and John Lithgow— in the blockbuster Interstellar.

What is truly remarkable is that Christopher Nolan’s sci-fi epic spins around Gargantua, the most accurate black hole ever simulated, the fruits of a remarkable collaboration between a leading scientist, Kip Thorne, and a team led by Oscar winning visual effects wizard, Paul Franklin, who will help present the film with me in the Science Museum’s IMAX Theatre on Saturday (8 Nov 2014).

Interstellar’s plot, which started out being developed by Nolan’s brother Jonathan, relies on the monster black hole to explore the theme of time dilation, through which clocks can tick at different rates for different characters.

This is an idea that appeals deeply to Nolan. He used it in his mind-bending hit Inception, in which time moved at different speeds depending on the dream state of his characters. The extraordinary computer generated visions of Nolan’s dream worlds would win Franklin an Oscar.


Black holes are so dense that their gravitational pull prevents anything from ever escaping their grasp. At their heart is what physicists call a singularity, a point of effectively infinite density where the existing laws of physics break down (the laws of quantum gravity are thought to take hold in its core but we don’t understand them at all well). Around the black hole space-time itself bends to the point where even light can’t escape.

This extreme bending of space-time means that as you approach a black hole time will slow down noticeably for you relative to the outside world. An astronaut who managed to navigate into the closest orbit around a rapidly-spinning black hole – without falling in – could, in a subjectively short period, view an immensely long time span unfold.

Nolan was adamant that for Interstellar he wanted to explore ‘real possibilities’, not pure fantasy. Enter Kip Thorne, the 74-year-old Feynman Professor of Theoretical Physics Emeritus at Caltech, who was the inspiration for the character played in the movie by Michael Caine.

Thorne is one of the world’s leading experts on general relativity, the theory of gravity that Albert Einstein unveiled almost a century ago, and he once helped Carl Sagan with interstellar travel in his novel and movie Contact. Nolan brought Thorne together with Paul Franklin, along with his 30 strong team at the British visual effects company, Double Negative.

To make Gargantua scientifically plausible, Franklin asked Thorne to provide him with equations that would guide their visual effects software in precisely the way that Einstein’s physics models the real world.‘This is the first time that a movie’s black-hole visualisation started with Einstein’s general relativity equations,’ says Thorne.

Franklin and the Double Negative team, notably Eugénie Von Tunzelmann (CG Supervisor) and Oliver James (Chief Scientist), used a “render farm”, consisting of thousands of computers running in parallel, to trace light beams around the black hole. Some individual frames for the movie took up to 100 hours to create this way and, in all, the movie manipulated an eye-watering 800 terabytes of data.

Christopher Nolan filming on the set of Interstellar. © 2014 Warner Bros. Entertainment. All rights reserved

Christopher Nolan filming on the set of Interstellar. © 2014 Warner Bros. Entertainment. All rights reserved

The resulting Gargantua black hole looks like “a great lens in the sky with a dark heart,” says Franklin. And there is no way better to enjoy this, the most accurate depiction of a black hole created to date, than on one of the handful of 70 millimetre IMAX cinemas in the UK, notably at the Science Museum in London and the National Media Museum in Bradford.

Physics modelled by the film includes one of Einstein’s most famous predictions: that the path of a light beam can be warped by the gravity of a massive object, such as a star. When light from distant bodies passes through the gravitational field of much nearer massive objects, it bends by an effect known as “gravitational lensing,” providing extra magnification akin to a natural telescope and, as Thorne puts it, “image distortion akin to a fun-house warped mirror.”

This modelling of warped space around Gargantua creates a curious, compelling and surprising feature of the gravitational lensing of the star-studded sky along with the simulated accretion disc, the matter swirling into the hole at speeds approaching in the speed of light, which glows brightly.

‘This is the first time that a movie’s black-hole visualisation started with Einstein’s general relativity equations.’

At first they thought that there was a bug in their programming but when it persisted in the Double Negative simulations Thorne became convinced that the unexpectedly complex halo near Gargantua’s shadow was real and not an artefact. He expects at least two papers to emerge from the new details they found lurking in Einstein’s equations: one in the British journal Classical and Quantum Gravity for astrophysicists and one for the computer graphics community.

Thorne’s long term scientific collaborator and friend, Stephen Hawking, has argued that the long-term survival of our species depends on us developing interstellar travel. This is the central theme explored in Interstellar but, of course, to visit another star without spending thousands of years on the journey is not easy.

As one example of the distances involved, it takes light itself some 25,000 years to reach Earth from the gaping maw of the black hole that sits at the heart of our own galaxy, one with a mass of around three or four million times that of the Sun but 30 times smaller than Gargantua.

Physics forbids travel that is faster than the speed of light but might possibly allow for radical shortcuts: wormholes – hypothetical tunnels through space-time – predicted by Einstein’s general theory of relativity that can connect remote parts of the universe.

Their inception dates back decades to 1916 work by Ludwig Flamm at the University of Vienna, and later work in the 1930s by Einstein himself and Nathan Rosen in Princeton. Flamm, Einstein and Rosen discovered a solution of Einstein’s general relativity equations that describes a bridge between two places/times (regions of what scientists call space-time). This so called ‘Einstein-Rosen bridge’ – what we now call a wormhole - could pave the way to the possibility of moving colossal distances across the universe, even time travel.

It turned out that an Einstein-Rosen wormhole could not exist for long enough for light to cross from one part of the universe to the other. In effect, gravity slams this interstellar portal shut. This was a headache when the late astronomer Carl Sagan decided to write a science fiction novel, Contact, to travel from Earth to a point near the star Vega.

In 1985, when the book was in page proof form and Sagan’s attempt at interstellar travel relied on a black hole, he approached Thorne at Caltech, whom he had known since 1970. Indeed, Sagan had even set up Thorne on a blind date with Lynda Obst, who later became the producer of the film Contact (and of Interstellar). Thorne said a wormhole, not a black hole, was what was needed and enlisted the help of his students to work out what flavours of matter and energy would be needed to enable this feat of interstellar travel.

Thorne, Michael Morris and Ulvi Yurtsever speculated that with the help of fluctuations in quantum theory – one aspect of the bizarre theory that governs the subatomic world in terms of probabilities, not certainties – it might be possible to travel between different places and times.

In 1987, they reported that, for a wormhole to be held open, its throat would have to be threaded by some form of exotic matter, or some form of field that, because of quantum fluctuations, could exert negative pressure or negative energy and thus have antigravity associated with it. Thorne suggested that only an advanced civilization could make and maintain a traversable wormhole, “if it is even allowed by the laws of physics.”

At Hawking’s 60th birthday celebrations in Cambridge in 2002, Thorne told me that the laws of physics probably forbid ever collecting enough of exotic matter inside a human-sized wormhole to hold it open, but the final story was not in. There were still researchers studying whether it is possible to stuff enough exotic matter into the maw of a wormhole to maintain its gape – and there still are today.

So wormholes, while likely forbidden by physical laws, are still the subject of serious and respectable scientific study, and hence also of serious science fiction. Thorne has now written a book to accompany Nolan’s movie, The Science of Interstellar, in which he tackles wormholes, black holes and much more. With Interstellar we have another remarkable example, along with Contact and Gravity, of where the dreams and imagination of Hollywood thrive on real science.

See Interstellar in the Science Museum’s IMAX Theatre from 8 November 2014.Book tickets here.