Tag Archives: science museum

Information Age: evolution or revolution?

On Friday 24 October 2014, the Science Museum celebrated the launch of a new permanent gallery; Information Age. The gallery explores over 200 years of information and communication technologies and was officially opened by Her Majesty The Queen who marked the occasion by sending the first tweet by a reigning monarch. In the afternoon, the Museum’s IMAX auditorium continued the celebrations, bringing together a panel of some of the world’s leading thinkers and entrepreneurs to share their insights and predictions about the big events that have shaped the communication technology we are familiar with today, and look ahead to what the future may hold.

Director of External Affairs Roger Highfield introduces the panel at Information Age: evolution or revolution?

We’re repeatedly told that we are experiencing more rapid technological advances than ever before. But over the past two centuries, our predecessors witnessed transformational developments in communication technology that were arguably far more revolutionary, from the laying of the first telegraph cable that connected the UK and USA to the birth of radio and TV broadcasting.

What can we learn from their experiences? Is what we are going through truly an unparalleled revolution, or does our focus on the now distort our perspective on an ongoing evolution in our relationship to information?

Click here to listen to the whole discussion and decide for yourself…

Chaired by Tom Standage, Digital Editor of The Economist and author of The Victorian Internet and Writing on the Wall, the expert panel brought together to discuss this question featured:

  • Hermann Hauser, computing engineer and co-founder of venture capital firm Amadeus Capital Partners
  • Baroness Martha Lane Fox, co-founder of lastminute.com, Chancellor of the Open University, chair of Go ON and board member of Marks and Spencer
  • Mo Ibrahim, mobile communications entrepreneur and founder of Celtel, one of Africa’s leading telecommunications operators, and
  • Jim Gleick, best-selling author of Chaos and The Information

The opening of Information Age marks the start of the biggest period of development of the Museum since it was opened over a century ago. Over the next five years, about a third of the Museum will be transformed by exciting new galleries, including a brand new mathematics gallery designed by Stirling Prize-winning architect Zaha Hadid.

Information Age is now open, located on floor 2 of the Museum. A new book entitled Information Age, to which the event’s panel have all contributed, is also now on sale in the Museum shop and online.

Wonderful Things: Memory box

Rosanna Denyer from our Learning Support Team writes about one of her favourite Science Museum objects.

By 2015, 850,000 people in the UK will have been diagnosed with dementia. Dementia is a term used to describe the symptoms of diseases that cause memory loss, confusion and problems with communication. Dementia is progressive,so the symptoms become worse as time goes on.

Until 1906 it was thought that dementia was an inevitable part of growing old. This changed when Dr Alois Alzheimer,a leading neurologist who researched the brain and the nervous system, gave a lecture about a disease which caused memory loss, hallucinations and problems with communicating and understanding. He was describing what we now know as Alzheimer’s disease, the most common form of dementia.

Doctors now know that the death of neuron cells in the brain is the main cause of dementia. Neurons need nutrients, oxygen and close contact with other cells in order to survive. Scientists are always looking for possible cures for dementia, a great deal of the research is aimed at treating the symptoms, for example trying to delay memory loss.

However, treatment for memory loss does not lie solely in the hands of scientists. Memory boxes, such as the one on display in the Who Am I? gallery, are used by people with dementia, with their friends and families, to help them retain memories.

Memory Box

Memory Box in the Who Am I? gallery at the Science Museum

Photographs and objects that have special memories connected to them can be kept inside the boxes. The person with dementia can look through the box and be reminded of people, places and events from their lives. They can be used to trigger memories of a past career or love.

In the next 10 years a further one million people in the UK will develop dementia. Whilst scientists research and test treatments, families and communities will continue to develop ways to manage the symptoms. A memory box may seem simple, but it is a method which is accessible, affordable and effective.

The issue of how to treat and manage dementia is experienced by communities all over the world. By 2030, the number of people with dementia worldwide is estimated to reach 65 million.

Some countries are finding unique ways to help people live with the symptoms of dementia. One care home in Amsterdam has created an entire village which is ‘dementia friendly.’ The 152 residents live in the small village of Hogewey which has a restaurant, theatre, beauty salon and village shop.  The village is staffed by healthcare workers and volunteers and gives elderly people with dementia a safe environment in which to enjoy everyday life.

What memories would you want to keep in your memory box?

The memory box can be found in the Who Am I? gallery, on the first floor of the Wellcome Wing in the Science Museum.

Her Majesty The Queen sends her first tweet to unveil the Information Age

By Roger Highfield, Director of External Affairs

Her Majesty The Queen this morning opened the pioneering Information Age gallery at the Science Museum by sending her first tweet to the world, 76 years after The Queen’s first visit to the museum.

HM The Queen opens the Science Museum's Information Age gallery by sending her first tweet

HM The Queen opens the Science Museum’s Information Age gallery by sending her first tweet. Credit: Science Museum

The Queen and His Royal Highness The Duke of Edinburgh had earlier toured the landmark gallery, which explores the six networks that have transformed global communications, listening to personal recollections of people whose first experience of television was watching her Coronation in 1953.

Inviting Her Majesty to open the gallery, Science Museum Director Ian Blatchford remarked on how royalty had embraced communications technology from the day Queen Victoria took an interest in the invention of the telephone, which was demonstrated to her in January 1878 by Alexander Graham Bell at Osborne House, Isle of Wight.

“Your Majesty has followed in this tradition,” said Mr Blatchford while addressing around 600 guests including communications entrepreneurs, authors and experts, from Baroness Lane Fox, Hermann Hauser and Mo Ibrahim to Prof Steve Furber, James Gleick, Tom Standage and Sir Nigel Shadbolt.

“You made the first live Christmas broadcast in 1957,” he added, “and an event relished by historians took place on 26 March 1976, when you became the first monarch to send an email, during a visit to the Royal Signals and Radar Establishment. “

Then Mr Blatchford invited Her Majesty to join him to “send your first Tweet”.

The Queen removed a glove to send her pioneering tweet from the @BritishMonarchy Twitter account.


The Queen's first Tweet

The Queen’s first Tweet

This marked the first time that a reigning British monarch contributed one of the half billion or so tweets that are sent every day.

The Queen has a long relationship with the Science Museum and first visited in March 1938, as a princess, a few years after it launched a pioneering Children’s Gallery.

Today she explored Information Age: Six Networks That Changed Our World, the first museum gallery dedicated to the history of information technologies, containing more than 800 iconic objects and six state-of-the art interactive displays in story boxes connected by an elevated walkway.

The £16 million project saw collaborations with leading artists and thinkers, including Olivier award-winning video and projection designer Finn Ross, artists Matthew Robins and Rafael Lozano-Hemmer, broadcaster Bonnie Greer and developer of the world wide web, Sir Tim Berners-Lee.

From the dramatic story of the laying of the first transatlantic telegraph cable that connected Europe and North America  to the birth of the modern smartphone, it looks at how today’s  world was forged with six communication networks: the telegraph; the telephone, radio and television broadcasting; satellite communications; computer networks; and mobile communications.

Lead curator Dr Tilly Blyth showed The Queen and The Duke of Edinburgh around the exhibition, from the bright yellow call box from Cameroon to the BBC’s first radio transmitter from 1922 to the monumental 6-metre high aerial tuning inductor from Rugby Radio Station that lies at the heart of the gallery.

This strangely beautiful web of copper and wood was once part of the most powerful radio transmitter in the world and was donated to the Science Museum by BT.

Over 410,000 people follow the Science Museum on Twitter via @sciencemuseum.

We use twitter to share as many fascinating objects (some weird, others wonderful) and stories from our exhibitions and collections as possible.  In the past we have shared science jokes and organised a Q&A with an astronaut.

We’ve even taken our followers inside Charlie Brown, the Apollo 10 Command Module.

Our curators regularly take over the @sciencemuseum account, taking hundreds of thousands of followers on Twitter tours of their favourite objects. In the past, @rooneyvision has shared his story of how we made the modern world, with @ali_boyle selecting her favourite objects from our astronomy collection (you can read the #CosmosTour here).

The @ScienceMuseum account was also at the heart of the Great British Innovation vote which attracted more than 50,000 votes from the public for their favourite innovation.

We love reading tweets from the millions of you who visit each year, sharing stories of visits, getting engaged and even dancing under our rockets.

From astronauts to pop stars, we have had the pleasure of meeting and tweeting many famous faces. Astronaut Gene Cernan, the last man on the moon, joked with us about driving a NASA moon buggy, with Chris Hadfield sharing stories of life on board the International Space Station, and will.i.am joining us for a tour of the museum.

And it was a remarkable day when both Prof Stephen Hawking and Nobel prize-winner Prof Peter Higgs met in the Science Museum for our Collider exhibition opening.

This year a record breaking 450,000 young people visited the Science Museum on educational trips, or benefitted from its outreach programme, more than any other UK museum. Our Learning team (@SM_Learn) helps schools to plan their visits as well as sharing science demos and experiments that wow visitors every day.

Information Age has been made possible through the generous support of the Heritage Lottery Fund, BT (Lead Principal Sponsor), ARM (Principal Sponsor), Bloomberg Philanthropies and Google (Principal Funders).  Major Funders include the Garfield Weston Foundation, the Wolfson Foundation, the Bonita Trust and the Motorola Solutions Foundation. 

Additional support has been provided by Accenture (Connect Circle Sponsor) as well as the Institution of Engineering and Technology (IET), Cambridge Wireless (CW), the David and Claudia Harding Foundation and other individual donors.  The Science Museum would also like to thank the BBC for their assistance.

Revealing The Real Cooke and Wheatstone Telegraph Dial

John Liffen, Curator of Communications, blogs about an important discovery to be displayed for the first time in our new Information Age gallery opening 25 October 2014.

The Science Museum’s new Information Age gallery features over 800 objects spanning 200 years of telecommunications. Many have been on display before, but most are on show for the first time in this gallery. Among these are newly-acquired objects that show the latest developments in communications, while others are drawn from the Museum’s extensive collections.

One object in particular represents what we believe to be a major discovery.

The object in question is a large Cooke and Wheatstone electric telegraph dial, on loan from Kings College London since 1963. The object has never before been on public display because of doubts over its authenticity. However, I am now confident that it dates from 1837, the year that the practical electric telegraph was introduced in Britain.

Cooke and Wheatstone's Five Needle Telegraph © Science Museum

The newly-identified Cooke and Wheatstone Five Needle Telegraph, 1837 © Science Museum/ Science & Society Picture Library

Since 1876, the Museum has displayed a smaller five-needle instrument and has claimed it to be one of the original instruments installed at either Euston or Camden Town in 1837 when Charles Wheatstone and William Cooke demonstrated their electric telegraph system to the directors of the newly-opened London and Birmingham Railway.

I had long been suspicious of this because there were several technical features which just did not ‘add up’. All the history books repeated the Museum’s assertion about its originality and yet there was no real evidence to confirm it. I decided it was time to find out for certain.

The smaller Cooke and Wheatstone telegraph instrument, now believed to date from about 1849 © Science Museum/ Science & Society Picture Library

The smaller Cooke and Wheatstone telegraph instrument, now believed to date from about 1849 © Science Museum/ Science & Society Picture Library

I researched the whole story again, this time using only contemporary records such as Cooke’s letters, other manuscript documents and press reports. After much work, I concluded that the large dial was almost certainly one of the two 1837 originals, whereas the smaller instrument was likely to be one of the working models made for demonstration at a High Court hearing in 1850 when a rival company was disputing Cooke and Wheatstone’s priority in the invention.

The layout of the dial was Wheatstone’s idea. Any of the 20 letters on the dial can be indicated by making the appropriate pair of needles point to it. No knowledge of a code is needed and the dial is big enough for a crowd of people to see it working. Then as now, good salesmanship was needed to put over new technology.

Sheet 1 of the drawings for Cooke and Wheatstone’s 1837 electric telegraph  © Science Museum/ Science and Society Picture Library

Sheet 1 of the drawings for Cooke and Wheatstone’s 1837 electric telegraph © Science Museum/ Science and Society Picture Library

So why is this discovery so important?

The electric telegraph was the first practical use of electricity and from the 1840s onwards it transformed world communications. After a transatlantic telegraph cable was laid in 1866, messages between Europe and North America took only hours to arrive rather than weeks. Moreover, Cooke saw the emerging railway system as a major customer for the new technology. To operate safely, the railways needed to observe a timetable based on a standard time system.

View taken from under the Hampstead Road Bridge  looking towards the station at Euston Square, 1837

View taken from under the Hampstead Road Bridge looking towards the station at Euston Square, 1837 © Science Museum/ Science & Society Picture Library

The electric telegraph enabled Greenwich time to be distributed right across Britain, and within a few years local time, based on the times of sunrise and sunset, had been replaced by standard (Greenwich) time. The telegraph could also help catch criminals. In 1845 a message sent from Slough railway station to Paddington enabled murder suspect John Tawell to be identified, arrested, and in due course, executed.

After many years of doubt, I am now satisfied that one of the key inventions from the beginning of electric telegraphy has been authenticated and rightly takes its place in our new Information Age gallery.

How Mathematics Inspired the Writers of The Simpsons and Futurama

Pete Dickinson, Head of Comms, reflects on a global premiere and the mathematics hidden within the Simpsons and Futurama.

Leading lights of the Simpsons and Futurama, Al Jean and David X. Cohen, served up a sell-out event at the Science Museum that danced effortlessly like a Simpsons episode between scintillating story-telling, one-liners and hard-core mathematics.

QI creator John Lloyd, CEO of Innovate UK Iain Gray, and mathematics populariser Alex Bellos were among those lured to the museum for an evening of maths and mirth, but it was 12-year-old Toby Hawkins whose question precipitated the eveningís global premiere.

Toby wondered whether we could hope for a Simpsons and Futurama crossover episode if anyone should prove that P does not equal NP and thus solve a major unresolved problem in computer science. In response we were treated to the first ever airing of part of a ‘Simpsorama’ crossover show that will see Bender travelling back in time in an attempt to kill Bart so worldwide disaster can be averted.

Al Jean and David X. Cohen discussing maths and The Simpsons at the Science Museum. Credit: Science Museum

Al Jean and David X. Cohen discussing maths and The Simpsons at the Science Museum. Credit: Science Museum

The evening was expertly compered by Simon Singh, author of The Simpsons and their Mathematical Secrets. He invited Al Jean and David X. Cohen to explain how and why they have regularly embellished episodes of both series with references to degree-level maths such as Fermatís Last Theorem or the Taxicab number.

Al Jean, who worked on the first series and is now executive producer of The Simpsons, and studied maths at Harvard, credited serendipity; many of the writers had scientific backgrounds. He went on to suggest that mathematics and comedy writing demand the same kind of thinking and a similar, sometimes obsessive, quest for the perfect solution.

We heard how, in the early 90s, the writers faxed a mathematician working at NASA to ensure the accuracy of a line by store owner Apu Nahasapeemapetilon when he boasts ‘I can recite pi to forty thousand places. The last digit is 1.’

David X Cohen, creator of Futurama who happens to have a computer science degree from UC Berkeley, hinted at a more serious purpose. Lamenting the way entertainment goes out of its way to make maths seem boring, he said ‘part of what I think about when we do Futurama is let’s make it fun, let’s not make it scary’.

Earlier, Science Museum Deputy Director Jean Franczyk had provided the context for the evening with a reminder of the Science Museumís ambitious plans for a new mathematics gallery, made possible by the generosity of the David and Claudia Harding Foundation. By combining the curation of David Rooney, the creativity of Zaha Hadid Architects and the museum’s beautiful maths collection, Jean predicted a gallery that would delight all, including the ‘intrepid and maths-loving Lisa Simpson’.

The event has inspired a wide range of media interest, on the importance of Lisa as a mathematical role model, the links between mathematics and comedy, along with mentions on Radio 4′s Loose Ends and Radio 1′s Nick Grimshaw Show.

All clips from The Simpsons and Futurama were kindly provided by Twentieth Century Fox Television.

Drayson Racing Car

Formula E: The Future of Racing

Pippa Hough, Assistant Content Developer in our Contemporary Science team, explores the new Formula E racing series.

Last month, we invited engineers from the Power Electronics Group to the Science Museum to share their latest research with our visitors. They are working on wireless charging systems to power up electric car batteries, and with them came the Drayson Racer, the fastest lightweight electric car in the world. This beautiful, green piece of precision engineering is fast; it broke records at 205mph and can go 0 to 60 in 3 seconds.

This week super speedy cars, much like the Drayson racer, will take part in Formula E; the first ever fully electric racing series, starting off in Beijing. The cars in Formula E aren’t quite as fast as the one we had on display, but with top speeds of 140mph it will definitely be entertaining to watch.

Drayson Racer, the fasted lightweight electric car in the world. Credit: Science Museum

Drayson Racer, the fasted lightweight electric car in the world. Credit: Science Museum

There are a few aspects of the Formula E that make it, in my opinion, the best type of racing there is:

Car Swapping

One of the major issues of electric cars is battery life. The racing cars used in Formula E can’t be charged quick enough at the pit stops so the drivers swap to a fully charged car. Given it’s a race the drivers need to hop out and into the other car within a minute. I think it provides an bonus ‘obstacle course’ like challenge that petrol racing really lacks.

Exotic Locations

Yes Formula 1 has exotic location, but Formula E has raised the game. The races will be in the heart of some of the most stunning capital cities in the world. Starting in the Olympic park in Beijing the championship will travel round to 10 cities including Berlin, Buenos Aires, Miami, and finishing up in central London in June 2015.

Futuristic Sounding

Electric cars engines are virtually silent. There’ll be no need for ear plugs while watching and given the city centre locations the races won’t be bothering the neighbours as much as petrol racing might. The sound Formula E cars make when racing has been described as anything from eerie to futuristic. They’re so quiet the engineers have to be warned with an air horn before the car come into the pit stops so they can get out of the way in time.


There’s virtually no interaction with the drivers for fans of racing, especially compared to other sports. The drivers can’t hear you cheering, not until they’re no the podium and by that time your encouragements don’t make any difference. Not so in Formula E, you can vote for your favourite driver before the race. The three most popular driver’s get a ‘power boost’ for their cars in the last leg of race.

Formula E will drive innovation in electric cars that’ll quickly trickle down to their domestic counterparts. In the not too distant future the wireless charging system the Power Electronics Group showed our visitors could be in parking spots all over the country ready to charge your electric car.

You can find out more about Formula E by watching the video below.

Going down the drain

In the latest of our blogs linked to The Rubbish Collection, Curator Sarah Harvey talks to Nick Mills, Waste Innovation Manager at Thames Water about what happens to our sewage and what the future holds for wastewater.

Sarah: What do Thames Water do with our sewage?

Nick: We have 350 sewage works and 68,000 miles of sewers across our region, which stretches from East London to the Cotswolds in the west. Last year, we removed and treated 4,369 million litres of sewage from 15 million customers. At our 350 sewage works we treat the sewage to remove contaminants and return it safely to the environment, it is often cleaner than the water in the river.

Sarah: What happens to the end products of the processing?

Nick: The main end-product of the sewage treatment process is something called sludge. This energy rich by-product is put to good use in anaerobic digestion, producing renewable energy that helps power our treatment sites. The digested sludge is then recycled to agricultural land.

Sludge having been put through a Bucher press to reduce liquid content © Thames Water

Sludge having been put through a Bucher press to reduce liquid content © Thames Water

Sarah: What are the biggest challenges you face in dealing with our sewage/ waste water?

Nick: London has outgrown its sewer system. The Victorian sewers are in great condition, but simply not designed for today’s population. They were designed for just over two million but are used today by just over six million. The proposed Thames Tideway Tunnel will stop tens of millions of tonnes of raw sewage flowing into the Thames every year via the outfall system. It is a must-do job. We can’t keep treating the Thames as a sewer.

The Lee Tunnel © Thames Water

The Lee Tunnel © Thames Water

Sarah: What are the strangest or most difficult things to deal with that people throw down the drains?

Nick: ‘Bin it – don’t block it’ is our campaign to end the misery caused by fatbergs. Leftover cooking fat and oil poured down the sink will set hard. This creates stinking, pipe-blocking fatbergs beneath your house or in your street.

A sewer flusher in London digging out a fatberg © Thames Water

A sewer flusher in London digging out a fatberg © Thames Water

Wet wipes are another big no-no because they are made of plastic. They don’t break down like toilet tissue, clinging to fat and clogging up the system. If drains get blocked, what you flush can come back up through your toilet or even your sink.

Sarah: What can consumers and organisations do better?  Is there a top 3 list of things people could do differently to help?

Nick: Our message is simple, if it’s not water, toilet tissue or poo, please… ‘Bin it – don’t block it’.

Sarah: What do you think the industry will be like in 20 years’ time? What are the new innovations and technologies that you are exploring at the moment?

Nick: In 20 years’ time I can see the wastewater industry becoming a net energy producer, by employing more efficient processes and increasing energy recovery. Combining advanced anaerobic digestion and technologies like pyrolysis, large increases can be made. Our Innovation team are busy demonstrating this at the moment. Phosphorus, a finite resource essential to life as we know it, will be recovered at every major sewage works and sold competitively as a fertiliser to farmers, this has also been demonstrated recently at our Slough sewage works by the Innovation team.

Innovation works at Slough © Thames Water

Slough sewage works © Thames Water

Sarah: What did you think when you first heard about Joshua Sofaer’s The Rubbish Collection project?

Nick: I think it is great. It shows the harsh reality of waste, but at the same time reveals the great work that people do behind the scenes to keep society moving. I hope it will encourage a new generation to start what is a very interesting and rewarding career as there are huge challenges yet to be solved.

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.

Roaming Far and Wide – the Science Museum in China

Outreach Officers Ronan Bullock, Aasiya Hassan and Susie Glover report back after their outreach trip to Hong Kong and China.

In March 2014, the Science Museum’s Outreach team was invited for the second time by The British Council in Hong Kong to deliver a series of shows and workshops as part of their Science Alive Festival. The theme of this year’s festival was ‘The Code of Life’ and we disgusted audiences with blood, guts and snot, exploring the science behind the human digestive system, blood and materials. We spent three days with our hosts at the Hong Kong Science Museum and a further nine days visiting twenty two schools across Hong Kong and New Territories. We experienced many different educational settings from government funded local schools to private international schools reached a combined audience of over 7,000!

Proving that no distance is too great for the Outreach team, we then caught a train to Dongguan City in mainland China to deliver events hosted by The Dongguan Science & Technology Museum. Over the course of four days we engaged with audiences at the museum and two local schools, reaching over 3,000 people. This visit continued our relationship with the museum, having hosted a number of free science shows performed by their staff right here in London, in the Science Museum, back in September 2013.

During our busy schedule we found time to sample some of the interesting local cuisines, tour both museums and see some local sites, the highlight of which was taking a cable car to see Hong Kong’s famous giant Tian Tian Buddha.

Simon Says… “be smart”

Charlotte Connelly, Content Developer, blogs about the IBM Simon, the first smartphone to go on public sale.

Twenty years ago, on 16 August 1994, the Bellsouth IBM Simon hit the American market. Weighing in at a hefty half a kilogram, and looking rather like a grey brick, the Simon was advertised with a not-so-snappy slogan declaring it to be “The World’s First Cellular Communicator”.

Although the slogan was a bit of a mouthful, the Simon really did break new ground. It took some of the best technology that the handheld computing world had to offer – personal digital assistants (PDAs) were all the rage in the early 1990s – and combined it with a mobile phone. 

With a stylus and touch screen, Simon’s users had all sorts of software applications, or apps, at their fingertips. They might sketch a drawing, update their calendar, write notes on a document, or send or receive a fax.

The Simon was, in effect, the world’s first smartphone; a device that could make calls and be programmed to do a wide range of other things. The built-in features could even be expanded by plugging in memory cards – not quite an app store, but long similar lines.

The Science Museum’s Simon was owned by a project manager for a construction company in the United States. He found the Simon invaluable because his office could fax him site plans to review. He could check them wherever he was and fax them back saving hours of shuttling plans physically around the country.

Despite having some loyal users, and after selling around 50,000 units, the Simon was withdrawn from sale after only 6 months. There were still some key pieces of the puzzle missing to enable a device like the Simon to become really successful. In 1994 the web was in its infancy, so the idea of downloading apps was not practical.

The mobile internet, accessible through mobile phones, was virtually non existent – explaining why fax was a key feature of the Simon. The hardware was also limited. With a battery that only lasted an hour in ‘talk mode’ it wasn’t practical to rely on the Simon to keep you in touch all day long. To top it all off, at $899 the Simon was simply too expensive for most people to justify.

Despite its imitations and brief foray in the marketplace, the Simon brought together many of the key things that underpin today’s smartphones. The next big splash in the market came over a decade later. By then, 3G mobile phone networks were available, online app stores were a genuine possibility and microprocessor technology had advanced enough to pack a really powerful computer into a small handheld device.

The launch of the iPhone 3G marked a turning point, and mobile phone companies saw the amount of data being used spike almost over night. (Source: Science Museum)

The IBM Simon will go on display in the Science Museum’s Information Age gallery which opens on 25 October 2014.

Shedding light on the matter of rubbish

In the latest of our blog series linked to The Rubbish Collection, the Science Museum’s Inventor in Residence Mark Champkins finds an ingenious use for our discarded materials.

The second phase of The Rubbish Collection exhibition is open at the Museum until 14 September. Having documented every piece of waste that passed through the Museum for a month, this second phase is a chance to see what would have been thrown away.

Of the material that hasn’t been selected for display, I collected a small box of bits that I hoped to turn into a product that we might sell in the shop. I like the idea that with a little bit of effort and imagination, items that would otherwise be chucked, can be turned into something desirable. Unfortunately the collection of items in the box that I had gathered didn’t look at all desirable. A couple of umbrellas, some bits from a light fitting, an old copper funnel, an ash tray, some plastic cutlery, some glass cups and a selection of ball bearings didn’t look very promising.

A box of bits © Mark Champkins

A box of bits © Mark Champkins

The germ of my idea came from digging out the copper funnel and investigating it further. It was heavily corroded and covered in green verdigris, but underneath was structurally solid, and a beautiful shape.

I read somewhere that vinegar could be used to clean copper, so I popped down to the café, to get a couple of sachets to try out. It turns out it does a reasonable job on lightly tarnished areas, but can’t handle the extent of corrosion on the funnel. However, it did encourage me that the funnel could be saved.

An old copper funnel © Mark Champkins

An old copper funnel © Mark Champkins

Next I pulled apart the umbrellas, lined up everything from the box and had a think what I might make. A happy coincidence was that the handle from the umbrella fitted exactly into the top of the funnel.


An umbrella handle © Mark Champkins

An umbrella handle © Mark Champkins

My first thought was to make some sort of loudspeaker people could shout through. Next, I thought the umbrella handle might plug the funnel to make a water-tight vase or container of some sort. Finally, looking at the shining clean patch of copper I thought, coupled with a 1950s-style squirrel cage bulb, it might make a really nice light fitting.

The next step was to recondition the copper funnel. In the basement, the Museum has metal and wood workshops responsible for building, installing and maintaining the structures for new exhibitions. Amongst their equipment is a sandblasting machine, which I used to blast the corrosion from the funnel.

Sandblasting the copper funnel © Mark Champkins

Sandblasting the copper funnel © Mark Champkins

I decided to leave the matt finish left from the sand blasting on the inside surface, and polish up the outside. Using Brasso and eventually a buffing wheel I polished up the outer surface.

Polishing © Mark Champkins

Polishing © Mark Champkins

Using a buffing wheel © Mark Champkins

Using a buffing wheel © Mark Champkins

To ensure the lamp remains pristine, I decided to use a polymer based lacquer, applied in the workshop’s spray booth.

In the spray booth © Mark Champkins

Finally I added the umbrella handle, and a lighting flex and fitting. I think the finished light looks rather good. It’ll be available for purchase in the Museum shop from mid August.

The finished light © Mark Champkins

The finished light © Mark Champkins

The lamp made from Museum rubbish © Mark Champkins

The lamp made from Museum rubbish © Mark Champkins

The finished lamp at work © Mark Champkins

The finished lamp at work © Mark Champkins

The light will be on sale in the Museum shop in mid-August © Mark Champkins

The light will be on sale in the Museum shop in mid-August © Mark Champkins

Phase 2 of Joshua Sofaer’s The Rubbish Collection runs at the Science Museum until 14 September 2014.