Tag Archives: Space

Human Spaceflight Enters a New Era

Doug Millard, Deputy Keeper of Technology and Engineering, reflects on Orion’s maiden voyage in space and NASA’s first step on the Journey to Mars.

THE ORION spacecraft that could loft humans to Mars in coming decades has made its maiden flight.

The conical craft, which looks Apollo on steroids, was launched on a Delta rocket out of Cape Canaveral in Florida on a short test flight in which it reached a height of 3,600 miles—15 times higher than the International Space Station and the farthest anyone has sent a human-spaceflight capsule since Apollo 17 returned from the Moon in 1972—and orbited the Earth twice.

The craft splashed down in the Pacific Ocean off the coast of Baja California, where it was recovered with help from the US Navy.

The launch marked the first mission of its type for almost half a century and will test key technologies to ensure that Nasa can send astronauts into Earth orbit and beyond – to the Moon, asteroids and ultimately to Mars.

Nasa’s chief scientist, Ellen Stofan, outlined Nasa’s vision during a talk in the Science Museum last month.

Currently the United States has no operational human-rated space launch system; astronauts are launched to the International Space Station aboard Russian Soyuz rockets.

Engineers installing the heat shield on NASA’s Orion spacecraft prior to its maiden space flight.  Orion is similar to the Apollo capsule design but larger, heavier and capable of carrying four astronauts – one more than Apollo could.  Image Credit:  NASA/Daniel Casper

Engineers installing the heat shield on NASA’s Orion spacecraft prior to its maiden space flight. Orion is similar to the Apollo capsule design but larger, heavier and capable of carrying four astronauts – one more than Apollo could. Image Credit: NASA/Daniel Casper

Orion, built by Lockheed Martin, will be a successor to the Shuttle, which acted as NASA’s human-rated launch system for 30 years but could not go beyond Earth orbit. Nasa administrator Charlie Bolden called the Orion test “a giant day for us.”

The Orion craft it is clearly an enlarged and improved Apollo command module, as on display in the Science Museum (Apollo 10) – the blunt-bodied ballistic capsule the took the first humans to the Moon and which was launched atop of a rocket and, at the end of its mission, hurtled back to Earth for a splash down.

Gene Cernan with Curator Doug Millard (l) in front of Apollo 10. Credit: Science Museum

Astronaut Eugene ‘Gene’ Cernan with curator Doug Millard (l) in front of Apollo 10. Cernan was Lunar Module Pilot on the Apollo 10 mission and flew also on Apollo 17 as commander and the last man to walk on the Moon. Credit: Science Museum

Orion’s first manned mission is planned for 2021 – a rendezvous with a captured asteroid  as part of a plan to identify, capture and redirect a near-Earth asteroid to a stable orbit around the moon.

The last time Nasa launched a flight of this significance was in November 1967, when it launched the very first Saturn V rocket and with it the Apollo 4 command module on a very similar mission.

That pioneering sixties mission was a great success with both the rocket and spacecraft performing largely to plan. Within a year, Nasa had launched the Apollo 7 mission – the first crewed flight of a command module.

One of the key differences between the two programmes is the rate of development: Apollo had billions of dollars and hundreds of thousands of personnel all working frantically to meet President Kennedy’s commitment of landing a man on the Moon and returning him safely to the Earth before the end of the 1960s.

Orion has no such political underpinning and still less the huge amounts of money Apollo was granted. Progress is and has to be slower, and it may be that a momentum of successive missions will be hard to maintain.

And yet, if humans are to have a future in space such large, state-directed programmes will almost certainly have to continue, even if they are extended over many more years than the decade or so invested in project Apollo.

Asteroid Day Declaration at Science Museum

Roger Highfield, Director of External Affairs, writes about the launch of Asteroid Day at the Science Museum.

Asteroid Day was unveiled last night in the Science Museum, as part of a global news conference lead by Lord Martin Rees, Astronomer Royal and former trustee, and the astrophysicist and Queen guitarist Dr Brian May.

 Lord Martin Rees, the Astronomer Royal, Director Grigorij Richters and Dr Brian May, astrophysicist and guitarist from Queen took part in the launch event at the Science Museum.

Lord Martin Rees, the Astronomer Royal, Director Grigorij Richters and Dr Brian May, astrophysicist and guitarist from Queen took part in the launch event at the Science Museum. Image: © Max Alexander

Launching an international awareness day and accompanying declaration the organisers hope to draw more attention to the threat posed by the million or so asteroids in our solar system that have the potential to destroy a city. To date, we have discovered around one per cent, fewer than 10,000.

The event in the museum’s Cosmos and Culture gallery, chaired by organiser Grigorij Richters,  was linked to the California Academy of Sciences in San Francisco where astronauts Tom Jones, Ed Lu, and Apollo 9 Astronaut Rusty Schweickart addressed the meeting.

A focus was the release of the “100x Declaration”, read out in the museum by Lord Rees, calling for a 100 fold increase in the detection and monitoring of near Earth asteroids that threaten human populations.

Lord Rees said: “We must make it our mission to find asteroids before they find us.”

“The human race has been living on borrowed time,” added May, who said he was honoured to be in the museum. “Nobody knows when the next big one will hit. It takes just one. We have a huge bridge to cross. But we do have all the technology to avert disaster.”

They urged the adoption of Asteroid Day on June 30, 2015 – the anniversary of the 1908 Tunguska  explosion, caused by an impact which destroyed 800 square miles, the equivalent size of a major metropolitan area,  in Russia.

The 100x Declaration was signed by more than 100 noted figures from 30 countries, including Richard Dawkins, Anousheh Ansari, Stewart Brand, investors Shervin Pishevar and Steve Jurvetson, Alan Eustace and Peter Norvig of Google, Peter Gabriel, Jane Luu and Jill Tarter.

There were also many who had links with the Science Museum including Brian Cox, Kip Thorne (through Interstellar), and Helen Sharman.

The declaration was signed by around 40 astronauts and cosmonauts, such as Chris Hadfield and Jim Lovell. “We have the technology to deflect dangerous asteroids through kinetic impactors and gravity tractors but only if we have years of advance warning of their trajectories,” stated Dr Ed Lu, Shuttle astronaut, designer of the gravity tractor and cofounder of the Sentinel Mission, a space-based infrared survey mission to discover and catalogue larger asteroids.

The point, he said, was not to push any one particular technology or project but rather to raise awareness and encourage the discovery of asteroids in any way possible.

Currently, governments around the world spend up to $50 million per year toward this end, and scientists find about 1,000 near earth objects annually, said Lu.

Rusty Schweickart, who with Lu co-founded the B612 Foundation as part of their mission, said the magnitude of the threat dawned in the wake of the pioneering work of Profs Luis and Walter Alvarez, who linked an impact 65 million years ago to the demise of the dinosaurs, and when Comet Shoemaker–Levy 9  broke apart and collided with Jupiter in July 1994. “We need to accelerate the discovery of these objects.”

Press conference attendees in London and San Francisco listen to ‘Science Guy’ Bill Nye, live from New York.

Press conference attendees in London and San Francisco listen to ‘Science Guy’ Bill Nye, live from New York. Image © Max Alexander

Meanwhile, Bill Nye, the Science Guy and CEO of the Planetary Society, joined the event via Google Hangout from New York.  He told the meeting: “Let’s get going.

The Science of Interstellar

Roger Highfield, Director of External Affairs at the Science Museum, explores the physics of Hollywood blockbuster Interstellar. Book tickets here to see Interstellar in full 70mm IMAX quality.

Black holes are thought to lie at the heart of most, possibly all, galaxies. So it should come as no surprise that a particularly striking black hole lurks at the heart of the galaxy of Hollywood stars—Matthew McConaughey, Anne Hathaway, Jessica Chastain, Michael Caine, Bill Irwin, Casey Affleck and John Lithgow— in the blockbuster Interstellar.

What is truly remarkable is that Christopher Nolan’s sci-fi epic spins around Gargantua, the most accurate black hole ever simulated, the fruits of a remarkable collaboration between a leading scientist, Kip Thorne, and a team led by Oscar winning visual effects wizard, Paul Franklin, who will help present the film with me in the Science Museum’s IMAX Theatre on Saturday (8 Nov 2014).

Interstellar’s plot, which started out being developed by Nolan’s brother Jonathan, relies on the monster black hole to explore the theme of time dilation, through which clocks can tick at different rates for different characters.

This is an idea that appeals deeply to Nolan. He used it in his mind-bending hit Inception, in which time moved at different speeds depending on the dream state of his characters. The extraordinary computer generated visions of Nolan’s dream worlds would win Franklin an Oscar.


Black holes are so dense that their gravitational pull prevents anything from ever escaping their grasp. At their heart is what physicists call a singularity, a point of effectively infinite density where the existing laws of physics break down (the laws of quantum gravity are thought to take hold in its core but we don’t understand them at all well). Around the black hole space-time itself bends to the point where even light can’t escape.

This extreme bending of space-time means that as you approach a black hole time will slow down noticeably for you relative to the outside world. An astronaut who managed to navigate into the closest orbit around a rapidly-spinning black hole – without falling in – could, in a subjectively short period, view an immensely long time span unfold.

Nolan was adamant that for Interstellar he wanted to explore ‘real possibilities’, not pure fantasy. Enter Kip Thorne, the 74-year-old Feynman Professor of Theoretical Physics Emeritus at Caltech, who was the inspiration for the character played in the movie by Michael Caine.

Thorne is one of the world’s leading experts on general relativity, the theory of gravity that Albert Einstein unveiled almost a century ago, and he once helped Carl Sagan with interstellar travel in his novel and movie Contact. Nolan brought Thorne together with Paul Franklin, along with his 30 strong team at the British visual effects company, Double Negative.

To make Gargantua scientifically plausible, Franklin asked Thorne to provide him with equations that would guide their visual effects software in precisely the way that Einstein’s physics models the real world.‘This is the first time that a movie’s black-hole visualisation started with Einstein’s general relativity equations,’ says Thorne.

Franklin and the Double Negative team, notably Eugénie Von Tunzelmann (CG Supervisor) and Oliver James (Chief Scientist), used a “render farm”, consisting of thousands of computers running in parallel, to trace light beams around the black hole. Some individual frames for the movie took up to 100 hours to create this way and, in all, the movie manipulated an eye-watering 800 terabytes of data.

Christopher Nolan filming on the set of Interstellar. © 2014 Warner Bros. Entertainment. All rights reserved

Christopher Nolan filming on the set of Interstellar. © 2014 Warner Bros. Entertainment. All rights reserved

The resulting Gargantua black hole looks like “a great lens in the sky with a dark heart,” says Franklin. And there is no way better to enjoy this, the most accurate depiction of a black hole created to date, than on one of the handful of 70 millimetre IMAX cinemas in the UK, notably at the Science Museum in London and the National Media Museum in Bradford.

Physics modelled by the film includes one of Einstein’s most famous predictions: that the path of a light beam can be warped by the gravity of a massive object, such as a star. When light from distant bodies passes through the gravitational field of much nearer massive objects, it bends by an effect known as “gravitational lensing,” providing extra magnification akin to a natural telescope and, as Thorne puts it, “image distortion akin to a fun-house warped mirror.”

This modelling of warped space around Gargantua creates a curious, compelling and surprising feature of the gravitational lensing of the star-studded sky along with the simulated accretion disc, the matter swirling into the hole at speeds approaching in the speed of light, which glows brightly.

‘This is the first time that a movie’s black-hole visualisation started with Einstein’s general relativity equations.’

At first they thought that there was a bug in their programming but when it persisted in the Double Negative simulations Thorne became convinced that the unexpectedly complex halo near Gargantua’s shadow was real and not an artefact. He expects at least two papers to emerge from the new details they found lurking in Einstein’s equations: one in the British journal Classical and Quantum Gravity for astrophysicists and one for the computer graphics community.

Thorne’s long term scientific collaborator and friend, Stephen Hawking, has argued that the long-term survival of our species depends on us developing interstellar travel. This is the central theme explored in Interstellar but, of course, to visit another star without spending thousands of years on the journey is not easy.

As one example of the distances involved, it takes light itself some 25,000 years to reach Earth from the gaping maw of the black hole that sits at the heart of our own galaxy, one with a mass of around three or four million times that of the Sun but 30 times smaller than Gargantua.

Physics forbids travel that is faster than the speed of light but might possibly allow for radical shortcuts: wormholes – hypothetical tunnels through space-time – predicted by Einstein’s general theory of relativity that can connect remote parts of the universe.

Their inception dates back decades to 1916 work by Ludwig Flamm at the University of Vienna, and later work in the 1930s by Einstein himself and Nathan Rosen in Princeton. Flamm, Einstein and Rosen discovered a solution of Einstein’s general relativity equations that describes a bridge between two places/times (regions of what scientists call space-time). This so called ‘Einstein-Rosen bridge’ – what we now call a wormhole - could pave the way to the possibility of moving colossal distances across the universe, even time travel.

It turned out that an Einstein-Rosen wormhole could not exist for long enough for light to cross from one part of the universe to the other. In effect, gravity slams this interstellar portal shut. This was a headache when the late astronomer Carl Sagan decided to write a science fiction novel, Contact, to travel from Earth to a point near the star Vega.

In 1985, when the book was in page proof form and Sagan’s attempt at interstellar travel relied on a black hole, he approached Thorne at Caltech, whom he had known since 1970. Indeed, Sagan had even set up Thorne on a blind date with Lynda Obst, who later became the producer of the film Contact (and of Interstellar). Thorne said a wormhole, not a black hole, was what was needed and enlisted the help of his students to work out what flavours of matter and energy would be needed to enable this feat of interstellar travel.

Thorne, Michael Morris and Ulvi Yurtsever speculated that with the help of fluctuations in quantum theory – one aspect of the bizarre theory that governs the subatomic world in terms of probabilities, not certainties – it might be possible to travel between different places and times.

In 1987, they reported that, for a wormhole to be held open, its throat would have to be threaded by some form of exotic matter, or some form of field that, because of quantum fluctuations, could exert negative pressure or negative energy and thus have antigravity associated with it. Thorne suggested that only an advanced civilization could make and maintain a traversable wormhole, “if it is even allowed by the laws of physics.”

At Hawking’s 60th birthday celebrations in Cambridge in 2002, Thorne told me that the laws of physics probably forbid ever collecting enough of exotic matter inside a human-sized wormhole to hold it open, but the final story was not in. There were still researchers studying whether it is possible to stuff enough exotic matter into the maw of a wormhole to maintain its gape – and there still are today.

So wormholes, while likely forbidden by physical laws, are still the subject of serious and respectable scientific study, and hence also of serious science fiction. Thorne has now written a book to accompany Nolan’s movie, The Science of Interstellar, in which he tackles wormholes, black holes and much more. With Interstellar we have another remarkable example, along with Contact and Gravity, of where the dreams and imagination of Hollywood thrive on real science.

See Interstellar in the Science Museum’s IMAX Theatre from 8 November 2014.Book tickets here.

Konstantin Tsiolkovsky: Grandfather of Soviet Space Travel

Ulrika Danielsson, Content Coordinator for the Cosmonauts exhibition, reflects on the life of Konstantin Tsiolkovsky, the grandfather of Soviet space travel, 157 years after his birth.    

Look closely at this picture from the Russian module of the International Space Station and you will see two images of a man with a white beard. Known as the grandfather of Soviet space travel, this man dreamt of international space stations as early as the 1890s and cosmonauts still pay homage to him today. Born on this day (17 September) in 1857, the man’s name is Konstantin Tsiolkovsky.

Aboard the International Space Station. Credit: NASA

Aboard the International Space Station. Credit: NASA

Tsiolkovsky’s contribution to the science of space travel is diverse and astonishing, with his work ranging from robust science to science fiction. Citing the work of Jules Verne as a personal  inspiration, Tsiolkovsky believed science fiction was a valuable tool in advancing and popularising  serious scientific ideas. Subsequently, Tsiolkovksy himself produced three sci-fi novels, and towards the end of his life acted as technical advisor on the production of the Soviet sci-fi film ‘Cosmic Voyage’ (1936).

Konstantin Tsiolkovsky. Credit: Archive of Russian Academy of Sciences

Konstantin Tsiolkovsky. Credit: Archive of Russian Academy of Sciences

However, Tsiolkovksy’s prominence in the field of space travel is due to his work on the mathematics and mechanics of  how to reach outer space. He famously calculated the possibility of doing so by using liquid-propellant rockets. In addition to developing concepts on launch and orbital dynamics, Tsiolkovksy considered devices that would allow a human being to survive in space, including space suits and space food.

Drawing by Tsiolkovksy for the film ‘Cosmic Voyage’ showing a cosmonaut exiting a rocket via an airlock, 1932. Credit: Archive of Russian Academy of Science

Drawing by Tsiolkovksy for the film ‘Cosmic Voyage’ showing a cosmonaut exiting a rocket via an airlock, 1932. Credit: Archive of Russian Academy of Science

Tsiolkovsky’s achievements are even more extraordinary in light of his circumstances. Growing up in a large family of limited means and suffering from severely impaired hearing after contracting scarlet fever as a child, Tsiolkovsky was self-educated. After a brief period in Moscow where he taught himself mathematics, physics, astronomy and chemistry using public libraries, Tsiolkovsky returned to the provinces to become a school teacher and start a family.

Fleeing a bleak existence, he immersed himself in a world of inventions, struggling to get his work published – he was essentially founding a new field of science – but doggedly self-publishing when possible and gaining local followers intrigued by his ideas of metallic air ships, extra-terrestrial life and the colonization of other planets.

Tsiolkovsky’s work was driven by the idea that space travel would allow the human race to abandon Earth in the face of overpopulation and natural catastrophes, thereby securing the continued existence of humanity. He envisioned a species of super humans, a form of eugenics drawing on the likes of Nietzsche that does not tend to sit comfortably with those eulogizing his life and work in modern times. These super humans would use Earth as a source of energy and raw materials and cosmic evolution would eventually allow them to shed their physical “shells” and develop into energy, becoming immortal and boundless.

Despite receiving minor recognition from the state following the Russian Revolution of 1917, Tsiolkovsky’s situation remained relatively unchanged until he neared the end of his life in the 1930s when he was officially hailed as a hero.

Following the launch of the Soviet space programme in the 1950s, he went on to achieve cult status. To this day, Konstantin Tsiolkovsky remains a key inspirational and spiritual figure in the cosmonautical movement, alongside Chief Designer Sergei Korolev and the first man in space, Yuri Gagarin.

Discover Tsiolkovsky’s story and the dramatic history of the Russian space programme in our new exhibition, Cosmonauts: Birth of the Space Age, which opens soon.

V2 rocket on launch pad in Germany, 1945.

V-2: The Rocket that Launched the Space Age

This week (8 September 2014) marks 70 years since the first V-2 rocket attack on London. Curator Doug Millard reflects on the rocket that helped start the space age.  

On 8th September 1944 Professor Jones and his colleague turned suddenly to each other in their Whitehall office and in unison said, ‘That’s the first one’. London had experienced four years of explosions from Luftwaffe bombs so this latest blast was hardly remarkable. But what they had noticed was the second bang following immediately after the first: a double detonation.

For over a year Jones, as Assistant Director of Intelligence (Science) at the Air Ministry, and his team had been assembling evidence for the existence of a new type of German weapon – one quite unlike anything developed before.

The bombs dropped during the blitz had been carried by manned aircraft; more recent attacks came from pilotless planes nicknamed doodlebugs or buzz bombs (on account of their leisurely flight across the sky and the staccato drone they made). Both could be detected on the way to their targets and warnings issued for the populace to seek shelter.

The new weapon gave no such warning: its exploding signalled that it had already arrived. It was a rocket that dropped from the sky at twice the speed of sound: one explosion was the warhead detonating; the other the sonic boom of the rocket’s arrival.

A V-2 rocket on display in the Science Museum's Making the Modern World gallery.

A V-2 rocket on display in the Science Museum’s Making the Modern World gallery. Credit: Science Museum

It had been developed at the Peenemunde research establishment on the Baltic coast line of Germany. Designated the Aggregat 4 or A4, it was the latest in a series of new rockets designed by the German Army. It stood 14 metres high and weighed twelve and a half tonnes. It had a range of over 300 kilometres and touched space as it climbed to a height of 88 kilometres before dropping in a ballistic path on to its target. Joseph Goebbels renamed it Vergeltungswaffe 2 (Vengeance Weapon 2), which was later abbreviated to V-2.

Thousands of V-2s were launched during the war, most aimed at central London. They steered themselves and could not be jammed with radio signals. So even when a rocket’s launch was spotted by allied forces there was nothing that could be done to counter its flight. The V-2 was the harbinger of the Cold War’s missile age and the four minute warning.

A gyrocompass used to guide the flight path of V-2 rockets.

A gyrocompass used to guide the flight path of V-2 rockets. Credit: Science Museum / SSPL

The V-2’s guidance was innovatory – it employed a system of gyroscopes that registered any deviation in flight – but by today’s standards the missile’s accuracy was very poor. Most landed kilometres off target. Nevertheless, it was clear to many that this new weapon represented a future of strategic warfare; one in which far more powerful missiles mated to nuclear warheads would cover intercontinental distances on the way to their targets. To others it signalled the dawning of a space age when still bigger rockets would counter the pull of gravity and place satellites in orbits around the Earth.

After the war the Allies acquired the V2 technology and many of the rocket programme’s leading scientists and engineers. The Soviets constructed their own version at the start of a research programme that led eventually their own R-7 rocket which put Sputnik – the world’s first artificial satellite – into orbit.

The Americans took many surplus V-2s along with the rocket programme’s technical director Wernher von Braun. The Redstone rocket that launched the first American into space was von Braun’s derivative of his V-2. Eight years later his massive Saturn V rocket launched astronauts Armstrong, Aldrin and Collins to the Moon.

The missile Jones heard had come down in Chiswick, west London. It killed three people and destroyed a row of houses. Over the next months many more were launched with most falling in south-eastern England and killing thousands of people (a map of V-2 rocket strikes across London and surrounding counties can be seen here). In a grotesque irony the V-2 killed many more in the course of its manufacture by slave labour from the Mittelbau-Dora concentration camp in central Germany.

The final V-2 landed south of London in Orpington on March 27, 1945 killing one person – the last civilian fatality of the war in mainland Britain.

For more information, visit the Science Museum’s Making the Modern World gallery, where a full size V-2 rocket can be seen on display.

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. The foreground is littered with flattened rocks and the horizon is just visible at the tops of the top corners. Credit: NSSDC Photo Library

How to land on Venus

On the anniversary of Venera 7’s launch – the first spacecraft to successfully land on Venus – curator Doug Millard reflects on the challenge of exploring other worlds.

Over a 20-year period from the mid-1960s, Soviet scientists and engineers conducted one of the most successful interplanetary exploration programmes ever.

They launched a flotilla of spacecraft far beyond Earth and its Moon. Some failed, but others set a remarkable record of space firsts: first spacecraft to impact another planet, first controlled landing on another planet and the first photographs from its surface. The planet in question was not Mars – it was Venus.

Our knowledge of Venus at the time had been patchy. But as the Soviet probes journeyed down through the Venusian atmosphere it became clear that this planet – named after the Roman goddess of love – was a supremely hostile world. The spacecraft were named Venera (Russian for Venus) and the early probes succumbed to the planet’s immense atmospheric pressure, crushed and distorted as if made of paper.

Venera 3 did make it to the surface – the first craft ever to do so – but was dead by the time it impacted, destroyed by the weight of the air. Venera 4 was also shattered on the way down, but it survived long enough to return the first data from within another planet’s atmosphere. The engineers realised, though, they would have to reinforce still further the spacecraft’s titanium structures and silica-based heat shield.

The information coming in from the Venera probes was supplemented with readings from American spacecraft and ground-based observatories on Earth. Each added to an emerging picture of a hellish planet with temperatures of over 400 °C on the surface and an atmospheric pressure at ground level 90 times greater than Earth’s.

Spacecraft can only be launched towards Venus during a ‘window of opportunity’ that lasts a few days every 19 months. Only then do Earth and Venus’ relative positions in the Solar System allow for a viable mission. The Soviets therefore usually launched a pair of spacecraft at each opportunity. Venera 5 and 6 were launched on 5 and 19 January 1969, both arriving at Venus four months later.

There had not been time to strengthen these spacecraft against the unforgiving atmosphere, so instead the mission designers modified their parachutes so that they would descend faster and reach lower altitudes, sending back new data before their inevitable destruction.

Venera 7 descent module, (engineering model, scale 1;1), 1970  This descent module with parachute lanyards clearly visible was used for drop tests on Earth in 1970

This Venera 7 descent module (engineering model) with parachute lanyards clearly visible, was used for drop tests on Earth in 1970. Credit: Lavochkin Association/Photo: State Museum and Exhibition center, ROSIZO

Launched on 17 August 1970, Venera 7 made it intact to the surface of Venus on 15 December 1970 – the first probe ever to soft land on another planet. Its instruments measured a temperature of 465 °C on the ground. It continued to transmit for 23 minutes before its batteries were exhausted.

Venera 8 carried more scientific instruments which revealed that it had landed in sunlight. It survived for another 50 minutes. Venera 9, the first of a far stronger spacecraft design, touched down on 22 October 1975 and returned the first pictures from the surface of another planet. It too showed sunny conditions – comparable, the scientists reckoned, to a Moscow day in June.

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. The foreground is littered with flattened rocks and the horizon is just visible at the tops of the top corners. Credit: NSSDC Photo Library

This photograph, the first taken from the surface of another planet, was taken by the camera on board the Venera 9 descent module shortly after it landed on Venus on 25th October, 1975. Credit: NSSDC Photo Library

The surface was shown to be mostly level and made up of flat, irregularly shaped rocks. The camera could see clearly to the horizon – there was no dust in the atmosphere, but its thickness refracted the light, playing tricks and making the horizon appear nearer than it actually was. The clouds were high – about 50 km overhead.

The Soviet Union now had a winning spacecraft design that could withstand the worst that Venus could do. More missions followed, but then in the early 1980s the designers started making plans for the most challenging interplanetary mission ever attempted.

This photograph was taken by the Venera 13 camera using colour filters. It shows the serrated edge of the Venera 13 decent module gripping the soil on the rocky surface of Venus.  Credit: NASA History Office

This photograph was taken by the Venera 13 camera using colour filters. It shows the serrated edge of the Venera 13 decent module gripping the soil on the rocky surface of Venus.
Credit: NASA History Office

Scientists around the world were keen to send spacecraft to Halley’s Comet, which was returning to ‘our’ part of the Solar System on its 75-year orbit of the Sun. America, Europe and Japan all launched missions, but the Soviets’ pair of Vega spacecraft were the most ambitious, combining as they did a sequence of astonishing manoeuvres, first at Venus and then at Halley’s Comet.

Both craft were international in their own right, with many nations contributing to their array of scientific instruments. They arrived at Venus in June 1985.

Each released a descent probe into the Venusian atmosphere. Part of it released a lander that parachuted down to the surface while the other part deployed a balloon, with a package of scientific instruments suspended underneath that first dropped and then rose through the atmosphere to be carried around the planet by winds blowing at well over 200 miles per hour.

Meanwhile, the main part of each Vega spacecraft continued on past Venus, using the planet’s gravity to slingshot itself towards an encounter with Halley.

A little under a year later both arrived a few million kilometres distant from the comet. Both were battered and damaged by its dust, but their instruments and cameras returned plenty of information on the ancient, icy and primordial heavenly body.

A golden age of Russian planetary exploration had come to an end.

Russia plans to return to Venus, but meanwhile its Vega spacecraft, their instruments long dead, continue to patrol the outer reaches of the Solar System, relics of the nation’s pioneering days of space exploration.

Discover the dramatic history of the Russian space programme in our upcoming exhibition, Cosmonauts: Birth of the Space Age.

The First Woman in Space

Ulrika Danielsson, Content Coordinator for the Cosmonauts exhibition, reflects on the first woman to travel into space.  

On this day (16 June) in 1963, the spacecraft Vostok-6 thundered off into space, joining Vostok-5 in orbit. Shortly afterwards, the commander of Vostok-6 could be heard excitedly calling out over the radio:

“Ya Chaika, Ya Chaika [I am Seagull]! I see the horizon [...] This is the Earth; how beautiful it is. Everything goes well.”

26-year-old Valentina Tereshkova from the Soviet Union had just made history by becoming the first woman in space.

Tereshkova became an instant celebrity as images of her on board Vostok-6 were transmitted to Earth. In fact, due to the mission being shrouded in secrecy, Tereshkova’s own mother only found out about her daughter going to space when seeing the television broadcast.

Tereshkova on-board Vostok-6

Tereshkova on-board Vostok-6, credit: Russian State Archive of Scientific and Technical Documentation

Returning to Earth after 2 days, 22 hours and 50 minutes in orbit, Tereshkova was feted as a heroine. Her spacecraft, kept for posterity, will be displayed in the exhibition Cosmonauts: Birth of the Space Age which opens at the Science Museum in November 2014.

The mission was not a flawless success but this was hushed up by Soviet leaders who recognised her propaganda value. Joining a small group of flown cosmonauts, Tereshkova soon travelled the world as a cultural ambassador and political spokeswoman.

Within the Soviet Union the cosmonauts were idealised as heroes of a new era that the population should seek to emulate, while abroad they became the public face of the regime. Consequently their schedules were gruelling, and their image and behaviour carefully controlled; private lives ceased to be private.

Tereshkova, fellow Cosmonauts and Russian Premier Nikita Khrushchev on the Lenin mausoleum in Moscow

Tereshkova, fellow Cosmonauts and Russian Premier Nikita Khrushchev on the Lenin mausoleum in Moscow

Like the first man in space, Yuri Gagarin, Tereshkova wanted to fly again but was considered too important as a propaganda tool. Gagarin and Tereshkova’s value partly lay in qualities identified already at their initial selection; both came from modest backgrounds, were diligent students, model workers, politically loyal and personable. They were now celebrated as the communist dream come true.

Tereshkova’s public image differed from Gagarin’s however and was strictly gendered. While Gagarin was portrayed as a military hero in uniform, Tereshkova was shown with immaculate hair and make-up, wearing feminine dresses and high heels. In this way she came to embody the civilian, peaceful aspect of space travel.

In the early 1960s Soviet women were also encouraged to combine good work ethics and political commitment with femininity and a sense of style. Official accounts of Tereshkova consequently tried to reconcile her aptitude for science and technology with being feminine and chic.  To quote R.P. Sylvester, “[...] drab was out and Dior was most definitely in”.

Tereshkova and Gagarin

Tereshkova and Gagarin, credit: RIA Novosti

While Tereshkova’s accomplishment was held by many as living proof of gender equality under Communism, it soon became apparent that there was a lack of real commitment to continued female participation on the Soviet space program. Not until 1982 would another woman make it into orbit.

Over 50 years after her own space flight, Valentina Tereshkova describes it as the most bright and wonderful experience of her life, and maintains that given the opportunity she would fly into space again.

Discover the dramatic history of the Russian space programme in our new exhibition, Cosmonauts: Birth of the Space Age, opening soon.

From Earth to space in a Skinsuit

Julia Attias, a Research Assistant working at the Centre of Human and Aerospace Physiological Sciences (CHAPS), talks about her career in space science for our Beyond Earth festival this weekend. 

My name is Julia Attias and I’m a space physiologist. What does that mean? “Physiology” generally refers to the functions and processes of the human body. Space physiology involves the understanding of how the body functions in space, and particularly in an environment that has far less gravity than on Earth. It’s important to know how low gravity environments affect people taking part in space missions.

I became a space physiologist through completing a Masters degree in Space Physiology and Health at Kings College London in September 2012. The course is designed to help us understand the challenges that an astronaut’s body faces both in space and on return to Earth, such as muscle and bone loss, weakening of the cardiovascular system and visual disturbances.

During my masters dissertation, I started to research the “Gravity-Loading Countermeasure Skinsuit” (GLCS), funded by the European Space Agency (ESA). The Skinsuit was designed by a group of aerospace engineers at MIT, with the aim to recreate the same force that the body experiences through Earth’s natural gravitational pull. This way, if the Skinsuit is worn in environments of zero-gravity, the body should be protected from some of the issues mentioned above.

Testing the Skinsuit

Testing the Skinsuit

I’ve been studying the Skinsuit to see if it really does produce a gravity load similar to Earth’s, and if it could be used in the future alongside exercise activities to keep astronauts fit and keep their heart, muscles and bones strong in space.

Space travel is becoming of increasing interest in the UK, primarily owing to British astronaut Tim Peake, who will be flying to the International Space Station in 2015! During the next year, there will be many discussions about how to keep him healthy while in space.

I’ll be starting a PhD in October 2014 which will involve continuing my research with the Skinsuit to see how it might help tackle issues such as back pain and spinal elongation. This research will combine with other work conducted all over the globe to help keep astronauts like Tim Peake as free of physiological burden as possible for their return to Earth.

Unfortunately I won’t be at the Beyond Earth festival this weekend, because I’ll be testing the Skinsuit with ESA astronaut Thomas Pesquet!  We’ll be testing the Skinsuit in a weightless environment (not in space unfortunately!) through a parabolic flight. We will get into an aircraft which descends rapidly, creating up to 22 seconds of weightlessness at a time – it’s a bit like being on a roller coaster. The flight is to test the Skinsuit in a weightless environment – taking off and putting on the suit to ensure the simple things we take for granted on Earth are possible in zero-gravity!

One small step away from our own planet – Chris Hadfield visits the Science Museum

Astronaut Chris Hadfield visited the Science Museum to share stories, sign books and explore our space technologies collections with Curator Doug Millard. Press Officer Will Stanley describes the afternoon with Commander Hadfield. 

Safely back on Earth after living aboard the International Space Station (ISS), Canadian astronaut Chris Hadfield visited the Science Museum just before Christmas to share some of the extraordinary stories from his new book, An Astronaut’s Guide to Life on Earth.

First selected as an astronaut in 1992, Chris has since served as CAPCOM for 25 Shuttle launches, Director of NASA Operations in Star City, Russia and as Chief of ISS Operations. Chris first flew into space in 1995, before returning in 2001 to help install Canadarm2 on the ISS. His final mission as an astronaut began in December 2012, culminating with his role as Commander of ISS Expedition 35.

During a tour of the Exploring Space gallery with Curator Doug Millard I asked what it felt like being an astronaut on board the ISS, ‘You are a representative of so many people’s hopes and dreams,’ Chris told me. ‘To be on board the ISS for five months is a gift of time.’

Commander Hadfield tours the Space gallery with curator Doug Millard (r)

Commander Hadfield tours the Space gallery with curator Doug Millard (r)

After pausing for photographs in front of the original Apollo 10 Command Module – which carried Tom Stafford, John Young and Gene Cernan back from the Moon in 1969 – the conversation turned to the future of space exploration. ‘The International Space Station currently is an extension of our self-awareness beyond Earth. One small step away from our own planet. The next logical step is to go the Moon. I am really hoping that within my lifetime we will start living on the Moon,’ explained Hadfield.

Commander Hadfield on his visit to the Science Museum.

Commander Hadfield on his visit to the Science Museum.

Arriving at the IMAX theatre, Chris shared stories from his new book and answered questions from the 400-strong audience about life as an astronaut, ‘My son sent me an email saying Mount Etna was erupting, so just like a dad on vacation I took a picture of Mount Etna.’

Some questions needed only a short answer, ‘Did I have a party when I can back to earth? Yes, several’ joked Chris. But others, such as describing a space walk, needed more explanation.

‘There’s a textured depth of darkness like you’ve never seen.  You are assaulted by the visual onslaught of this new place. I was stunned by the unexpected power of what was pouring in through my eyeballs’ explained Chris. ‘It would have been rude not to stop and look.’

Chris went on to describe how it felt with such a huge visual impact but no sound, ‘It’s like standing next to a waterfall and it being deadly silent.’

‘A spacewalk is one of the most powerful reminders of how alone you are. You are truly alone in the universe.’

Questions turned to what you do on the ISS in your spare time, ‘I wrote a whole album while up in space,’ answered Chris. He went on to discuss the human need to understand life through art, – from cave paintings in France to his own experiences recording the now famous Space Oddity video.

Many questions focused on our fascination with space and exploration. Chris said, ‘Space travel is nothing new. It’s a pattern we have been following for the last 70,000 years. There is a human necessity to leave home. That’s how we have spread across the whole planet. Each generation wants to see what’s beyond the horizon.’

The afternoon ended with questions about life as an astronaut. ‘Most of my time as an astronaut has been living on earth,’ explained Chris. ‘What you do in space may be entertaining, but it’s really not what matters. It’s life on earth that’s important.’

Did you join us for the book signing? Tell us more in the comments below. 

Mission to Mars

Tanya, our Learning Resources Project Developer, blogs on potential missions to Mars and discussing them in the classroom. For more on our Talk Science teachers’ courses, click here.

We are in an interesting period of space travel; news from the past year has been filled with findings from the Curiosity rover and stories of possible manned missions to Mars. For me the release of Mars Explorer Barbie confirmed ‘Mars Mania’ is upon us. There are big questions surrounding the ethics and feasibility of sending humans to Mars, however proposals keep emerging which hope to do so, many of which are private enterprises.

One interesting example is the Inspiration Mars Foundation, which in 2018 plans to perform a Mars flyby, over a period of 501 days, with a married couple as its crew. Another, Mars One, seems to have really captured the public’s imagination.

It may sound like science fiction, but Mars One hopes to establish a colony on Mars by 2023. The plan is to use existing technologies, such as solar power and water recycling, to create a permanent habitat for the astronauts. Over the next ten years they will send rovers, satellites, living units, life support systems and supply units to Mars ready for the arrival of the first settlers in 2023.

Three generations of Mars rovers

Three generations of Mars rovers, including Curiousity far right. Image Credit: NASA/JPL-Caltech

Applications for the first round of astronauts closed recently; over 200,000 people, from more than 140 countries applied. Six teams of four will be selected for training, with further opportunities opening every year. The crew will learn medical procedures, how to grow food on Mars, and how to maintain the habitat and rovers. In 2024 a second crew will depart Earth, with four new settlers arriving every two years until 2033, when 20 people should be living on Mars.

This incredibly challenging mission is estimated to cost $6 billion. Interestingly part of the funding will come from a reality TV show which will follow the teams from their recruitment through to their first few years living on Mars. In addition to high costs the team will face Mars’ fiercely hostile environment; high levels of radiation, low gravity, little atmosphere, high impact from the solar winds, and water sources frozen underground. If successful the astronauts will make history, but it won’t be easy and they will never breathe fresh air again.

Picture of mars, taken by the Spirit rover.  Image credit: NASA/JPL/Cornell

Picture of mars, taken by the Spirit rover. Image credit: NASA/JPL/Cornell

The mission throws up many interesting questions from both a personal and technological perspective. Maybe try hosting your own debate on the subject, or if you’re a teacher, you could try raising the issues with your students using one of our discussion formats.

Should we send humans to Mars?
How would you feel if a loved one volunteered for a one-way mission to mars?
Do you think that current technologies could sustain life on Mars?

If you want to build your skills for using discussion in the classroom further, we are running the Talk Science teachers’ course in London on 29th November. For details of how to sign up click here.